Partition Coefficients for Acetic, Propionic, and Butyric Acids in a Crude Oil/Water System

1994 ◽  
Vol 39 (3) ◽  
pp. 513-516 ◽  
Author(s):  
Mark A. Reinsel ◽  
John J. Borkowski ◽  
John T. Sears
2011 ◽  
Vol 239-242 ◽  
pp. 2650-2654
Author(s):  
Fu Chen ◽  
Jie He ◽  
Ping Guo ◽  
Yuan Xu ◽  
Cheng Zhong

According to the mechanisms of carbon dioxide miscible flooding and previous researchers’ work on synthesis of CO2-soluble surfactant, Citric acid isoamyl ester was synthesized, and it’s oil solubility and the rate of viscosity reduction both in oil-water system and oil were evaluated. And then we found that this compound can solve in oil effectively; the optimum mass of Citric acid isoamyl ester introduced in oil-water system is 0.12g when the mass ratio of oil and water is 7:3 (crude oil 23.4g, formation water 10g) and the experimental temperature is 50°C , the rate of viscosity reduction is 47.2%; during the evaluation of the ability of Citric acid isoamyl ester to decrease oil viscosity, we found that the optimum dosage of this compound in 20g crude oil is 0.2g when the temperature is 40°C, and the rate of viscosity reduction is 7.37% at this point.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Senda Ben Jmaa ◽  
Amjad Kallel

The marine environment is constantly at risk of pollution by hydrocarbon spills that requires its cleanup to protect the environment and human health. Posidonia oceanica (L.) (PO) beach balls, which are characteristic of the Mediterranean Sea and abundant on the beaches, are used as biosorbent to remove hydrocarbons from the sea. The impact of several factors such as oil concentration, time sorption, and weight sorbent was investigated to determine the oil and water sorption capacity for raw and milled P. oceanica fibers. The study of kinetic models for initial crude oil concentration of 2.5, 5, 8.8, 10, 15, 20, 30, and 40 g/L revealed that crude uptake followed the pseudo-first-order model while, for isotherm models, the crude uptake onto the P. oceanica tended to fit the Langmuir model. Experiments were performed according to two systems: a pure oil and pure water system and a mixed oil/water system. For the dry system (pure oil and pure water), the maximum oil and water sorption capacity of raw and milled fibers was found to be 5.5 g/g and 14 g/g for oil and 14.95 g/g and 15.84 g/g for water, respectively, whereas, in the mixed oil/water system, the maximum oil and water sorption capacity was estimated as 4.74 g/g, 12.80 g/g and 7.41 g/g, 8.31 g/g, respectively. The results showed that, in spite of their absorbency of a lot of water, the milled fibers with grain size ranging between 0.5 mm and 1 mm might be the relevant sorbent for the elimination of crude oil from seawater thanks to its efficient sorption capacity and low cost.


2015 ◽  
Vol 54 (3) ◽  
pp. 968-978 ◽  
Author(s):  
Sivabalan Sakthivel ◽  
Sugirtha Velusamy ◽  
Ramesh L. Gardas ◽  
Jitendra S. Sangwai

Fuel ◽  
2017 ◽  
Vol 191 ◽  
pp. 239-250 ◽  
Author(s):  
Sivabalan Sakthivel ◽  
Sugirtha Velusamy ◽  
Vishnu Chandrasekharan Nair ◽  
Tushar Sharma ◽  
Jitendra S. Sangwai

2015 ◽  
Vol 398 ◽  
pp. 80-97 ◽  
Author(s):  
Sivabalan Sakthivel ◽  
Pratap K. Chhotaray ◽  
Sugirtha Velusamy ◽  
Ramesh L. Gardas ◽  
Jitendra S. Sangwai

Author(s):  
Huijun Zhao ◽  
Xiang Ding ◽  
Pengfei Yu ◽  
Yun Lei ◽  
Xiaofei Lv ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document