Role of Endogenous Flavonoids in Resistance Mechanism ofVignato Aphids

2000 ◽  
Vol 48 (11) ◽  
pp. 5316-5320 ◽  
Author(s):  
Vincenzo Lattanzio ◽  
Salvatore Arpaia ◽  
Angela Cardinali ◽  
Donato Di Venere ◽  
Vito Linsalata
Keyword(s):  

This article discusses the augmenting influence of Artesunate (ART) in combination with β-lactams (amoxicillin/clavulanic acid) antibiotic in sepsis mice models infected by a lethal challenge dose of live coagulase positive enterotoxigenic (Sec) MRSA that was isolated from a case of chronic bovine mastitis. The main goal is to find an appropriate treatment to overcome resistance mechanism of MRSA towards β-lactams antibiotic. Fifty healthy adult Swiss mice divided into 5 equal groups were used in the experimental procedure. The infected group that treated with both ART and β-lactams (amoxicillin/clavulanic acid) antibiotic revealed complete inhibition of MRSA count with complete normal macroscopic and histopathological features. We suggest that ART can potentiate the antibacterial action of β-lactams (amoxicillin/Clavulanic) acid against MRSA infection. The combination of ART and antibiotic can overcome MRSA resistance mechanism and so could be considered a novel candidate to overcome mastitis and/or sepsis caused by MRSA.


2022 ◽  
Vol 12 ◽  
Author(s):  
Youhui Gong ◽  
Ting Li ◽  
Qi Li ◽  
Shikai Liu ◽  
Nannan Liu

Mosquitoes’ increasing resistance to insecticides is becoming a major threat for control efforts worldwide. Multiple P450 genes that are up-regulated in permethrin resistant strains of Culex quinquefasciatus have been linked to the development of resistance. In the current study, we characterized the function of six P450 genes, CYP6P14, CYP6BZ2, CYP9J33, CYP9J34, CYP9J40, and CYP9J45, that are overexpressed in the permethrin resistant Culex mosquitoes and showed their capability in metabolism of permethrin. These six P450 genes can convert 3-phenoxybenzoic alcohol (PBCHO) to a less toxic product, 3-phenoxybenzoic acid (PBCOOH), indicating that these P450s play an important role in permethrin degradation pathways. Although we know multiple P450 genes are over-expressed in permethrin resistant Culex mosquitoes, it remains to be seen whether cytochrome P450-reductase (CPR) gene that are co-overexpressed with P450 genes in permethrin resistant mosquitoes do indeed serve as a resistance mechanism. An in-depth investigation of the expression of CPR gene in resistant mosquitoes was conducted in permethrin resistant mosquitoes. The finding of CPR gene overexpression in permethrin resistant mosquitoes suggested the importance of co-overexpression of multiple P450 genes with their obligatory electron donor CPR in the complex detoxification system, boosting the metabolism of permethrin and hence the development of permethrin resistance in Cx. quinquefasciatus.


2020 ◽  
Vol 21 (3) ◽  
pp. 179-193
Author(s):  
Chatterjee Anupriya ◽  
Nirwan Shradha ◽  
Bandyopadhyay Prasun ◽  
Agnihotri Abha ◽  
Sharma Pankaj ◽  
...  

: Oilseed brassicas stand as the second most valuable source of vegetable oil and the third most traded one across the globe. However, the yield can be severely affected by infections caused by phytopathogens. White rust is a major oomycete disease of oilseed brassicas resulting in up to 60% yield loss globally. So far, success in the development of oomycete resistant Brassicas through conventional breeding has been limited. Hence, there is an imperative need to blend conventional and frontier biotechnological means to breed for improved crop protection and yield. : This review provides a deep insight into the white rust disease and explains the oomycete-plant molecular events with special reference to Albugo candida describing the role of effector molecules, A. candida secretome, and disease response mechanism along with nucleotide-binding leucine-rich repeat receptor (NLR) signaling. Based on these facts, we further discussed the recent progress and future scopes of genomic approaches to transfer white rust resistance in the susceptible varieties of oilseed brassicas, while elucidating the role of resistance and susceptibility genes. Novel genomic technologies have been widely used in crop sustainability by deploying resistance in the host. Enrichment of NLR repertoire, over-expression of R genes, silencing of avirulent and disease susceptibility genes through RNA interference and CRSPR-Cas are technologies which have been successfully applied against pathogen-resistance mechanism. The article provides new insight into Albugo and Brassica genomics which could be useful for producing high yielding and WR resistant oilseed cultivars across the globe.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Anchana Sumarnrote ◽  
Hans J. Overgaard ◽  
Vincent Corbel ◽  
Kanutcharee Thanispong ◽  
Theeraphap Chareonviriyaphap ◽  
...  

Abstract Background Members of the Anopheles hyrcanus group have been incriminated as important malaria vectors. This study aims to identify the species and explore the insecticide susceptibility profile within the Anopheles hyrcanus group in Ubon Ratchathani Province, northeastern Thailand where increasing numbers of malaria cases were reported in 2014. Methods Between 2013 and 2015, five rounds of mosquito collections were conducted using human landing and cattle bait techniques during both the rainy and dry seasons. Anopheles mosquitoes were morphologically identified and their insecticide susceptibility status was investigated. Synergist bioassays were carried out with An. hyrcanus (s.l.) due to their resistance to all insecticides. An ITS2-PCR assay was conducted to identify to species the Hyrcanus group specimens. Results Out of 10,361 Anopheles females collected, representing 18 taxa in 2 subgenera, 71.8% were morphologically identified as belonging to the Hyrcanus Group (subgenus Anopheles), followed by An. barbirostris group (7.9%), An. nivipes (6.5%), An. philippinensis (5.9%) and the other 14 Anopheles species. Specimens of the Hyrcanus Group were more prevalent during the rainy season and were found to be highly zoophilic. Anopheles hyrcanus (s.l.) was active throughout the night, with an early peak of activity between 18:00 h and 21:00 h. ITS2-PCR assay conducted on 603 DNA samples from specimens within the Hyrcanus Group showed the presence of five sisters species. Anopheles peditaeniatus was the most abundant species (90.5%, n = 546), followed by An. nitidus (4.5%, n = 27), An. nigerrimus (4.3%, n = 26), An. argyropus (0.5%, n = 3), and An. sinensis (0.2%, n = 1). All An. hyrcanus (s.l.) specimens that were found resistant to insecticides (deltamethrin 0.05%, permethrin 0.75% and DDT 4% and synergist tests) belonged to An. peditaeniatus. The degree of resistance in An. peditaeniatus to each of these three insecticides was approximately 50%. Addition of PBO (Piperonyl butoxide), but not DEF (S.S.S-tributyl phosphotritioate), seemed to restore susceptibility, indicating a potential role of oxidases as a detoxifying enzyme resistance mechanism. Conclusions A better understanding of mosquito diversity related to host preference, biting activity and insecticide resistance status will facilitate the implementation of locally adapted vector control strategies.


2013 ◽  
Author(s):  
Robbie Carson ◽  
Basak Celtikci ◽  
Philip Dunne ◽  
Patrick Johnston ◽  
Sandra Van Schaeybroeck

2005 ◽  
Vol 60 (5-6) ◽  
pp. 427-434 ◽  
Author(s):  
Sylvie Marcacci ◽  
Muriel Raveton ◽  
Patrick Ravanel ◽  
Jean-Paul Schwitzguébel

The resistance mechanism of vetiver (Chrysopogon zizanioides) to atrazine was investigated to evaluate its potential for phytoremediation of environment contaminated with the herbicide. Plants known to metabolise atrazine rely on hydroxylation mediated by benzoxazinones, conjugation catalyzed by glutathione-S-transferases and dealkylation probably mediated by cytochromes P450. All three possibilities were explored in mature vetiver grown in hydroponics during this research project. Here we report on the chemical role of benzoxazinones in the transformation of atrazine.Fresh vetiver roots and leaves were cut to extract and study their content in benzoxazinones known to hydroxylate atrazine, such as 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)- one (DIBOA), 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) and their mono- and di-glucosylated forms. Identification of benzoxazinones was performed by thin layer chromatography (TLC) and comparison of retention factors (Rf) and UV spectra with standards: although some products exhibited the same Rf as standards, UV spectra were different. Furthermore, in vitro hydroxylation of atrazine could not be detected in the presence of vetiver extracts. Finally, vetiver organs exposed to [14C]-atrazine did not produce any significant amount of hydroxylated products, such as hydroxyatrazine (HATR), hydroxydeethylatrazine (HDEA), and hydroxy-deisopropylatrazine (HDIA). Altogether, these metabolic features suggest that hydroxylation was not a major metabolic pathway of atrazine in vetiver.


1992 ◽  
Vol 47 (5-6) ◽  
pp. 360-364 ◽  
Author(s):  
Z. Miszalski ◽  
H. Ziegler

50 U SOD in 1 ml or 10 mᴍ DDTC do not much change sulfite oxidation due to the free radicals procuding system xanthin-xanthin oxidase. Sulfite oxidation due to the activity of this free radicals producing system proceeds probably as the univalent oxidation of sulfite. The role of SOD in SO, resistance mechanism in plants and the role of DDTCas SO2 oxidation effect stimulator is discussed.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Jie Xiong ◽  
Ding-an Mao ◽  
Li-qun Liu

The pathogenesis of intractable epilepsy is not fully clear. In recent years, both animal and clinical trials have shown that the expression of ATP-binding cassette (ABC) transporters is increased in patients with intractable epilepsy; additionally, epileptic seizures can lead to an increase in the number of sites that express ABC transporters. These findings suggest that ABC transporters play an important role in the drug resistance mechanism of epilepsy. ABC transporters can perform the funcions of a drug efflux pump, which can reduce the effective drug concentration at epilepsy lesions by reducing the permeability of the blood brain barrier to antiepileptic drugs, thus causing resistance to antiepileptic drugs. Given the important role of ABC transporters in refractory epilepsy drug resistance, antiepileptic drugs that are not substrates of ABC transporters were used to obtain ABC transporter inhibitors with strong specificity, high safety, and few side effects, making them suitable for long-term use; therefore, these drugs can be used for future clinical treatment of intractable epilepsy.


Author(s):  
Udi Tarwotjo ◽  
Rully Rahadian

One of the resistance mechanism of P. xylostellato emamektin benzoate is target insensitivity which is acetylcholine esterase that responsible for resistance occurrence. The objective of this study was to determine the role of acetylcholinesterase in the resistance mechanism of P. xylostella population to emamektin benzoate. For enzyme activity analysis, larvae homogenate of the third instar of P. xylostella was prepared. The number of insects required for each scour is 1 for each field population. The protein content in P. xylostella homogenate was measured by the Folin-Ciocalteu test. Non-specific esterase activity with an absorption rate was read using ELISA reader tool with λ = 450 nm. The inhibition level of acetylcholinesterase activity by emamectin benzoate in the tested population was 36.84%. The highest inhibition occurs in Puasan (Ngablak) population.  The result shows that a α-naphthyl acetate substrate was used so that it was recorded as non-specific esterase activity and did not exhibit esterase activity which specifically describes emamectin benzoate. Non-specific esterase enzyme activity of either α or β-naphthyl acetate substances to benzoic emamectin in the tested population most of the population was still susceptible. On α-naphthyl acetate substrate, the highest absorbance value found in susceptible population to benzoate emamectin (0.773), while the lowest found in Babrik (Ngablak) population  (0.083).


Sign in / Sign up

Export Citation Format

Share Document