Identification of Isopeptide Bonds in Heat-Treated Wheat Gluten Peptides

2011 ◽  
Vol 59 (4) ◽  
pp. 1236-1243 ◽  
Author(s):  
Ine Rombouts ◽  
Bert Lagrain ◽  
Markus Brunnbauer ◽  
Peter Koehler ◽  
Kristof Brijs ◽  
...  
2012 ◽  
Vol 95 (2) ◽  
pp. 356-363 ◽  
Author(s):  
Herbert Wieser ◽  
Peter Koehler

Abstract Celiac disease (CD) is an inflammatory disease of the upper small intestine in genetically predisposed individuals caused by glutamine- and proline-rich peptides from cereal storage proteins (gluten) with a minimal length of nine amino acids. Such peptides are insufficiently degraded by gastrointestinal enzymes; they permeate the lymphatic tissue, are bound to celiac-specific, antigen-presenting cells, and stimulate intestinal T-cells. The typical clinical pattern is a flat small intestinal mucosa and malabsorption. Currently, the only therapy is a strict, lifelong gluten-free diet. Recent research has shown that gluten and gluten peptides can be degraded by prolyl endopeptidases from different sources. These peptidases can either be used to produce gluten-free foods from gluten-containing raw materials, or they have been suggested as an oral therapy for CD, in which dietary gluten is hydrolyzed by coingested peptidases already in the stomach, thus preventing CD-specific immune reactions in the small intestine. This would be an alternative for CD patients to the gluten-free diet. Furthermore, microbial transglutaminase could be used to detoxify gluten either by selectively modifying glutamine residues of intact gluten by transamidation with lysine methyl ester or by crosslinking gluten peptides in beverages via isopeptide bonds so that they can be removed by filtration.


2020 ◽  
Vol 118 ◽  
pp. 126091 ◽  
Author(s):  
Domenico Ronga ◽  
Luca Laviano ◽  
Marcello Catellani ◽  
Justyna Milc ◽  
Barbara Prandi ◽  
...  

2021 ◽  
pp. 1-24
Author(s):  
Kalekristos Yohannes Woldemariam ◽  
Juanli Yuan ◽  
Zhen Wan ◽  
Qinglin Yu ◽  
Yating Cao ◽  
...  

Author(s):  
Thomas R. McKee ◽  
Peter R. Buseck

Sediments commonly contain organic material which appears as refractory carbonaceous material in metamorphosed sedimentary rocks. Grew and others have shown that relative carbon content, crystallite size, X-ray crystallinity and development of well-ordered graphite crystal structure of the carbonaceous material increases with increasing metamorphic grade. The graphitization process is irreversible and appears to be continous from the amorphous to the completely graphitized stage. The most dramatic chemical and crystallographic changes take place within the chlorite metamorphic zone.The detailed X-ray investigation of crystallite size and crystalline ordering is complex and can best be investigated by other means such as high resolution transmission electron microscopy (HRTEM). The natural graphitization series is similar to that for heat-treated commercial carbon blacks, which have been successfully studied by HRTEM (Ban and others).


Author(s):  
K. P. Staudhammer ◽  
L. E. Murr

The effect of shock loading on a variety of steels has been reviewed recently by Leslie. It is generally observed that significant changes in microstructure and microhardness are produced by explosive shock deformation. While the effect of shock loading on austenitic, ferritic, martensitic, and pearlitic structures has been investigated, there have been no systematic studies of the shock-loading of microduplex structures.In the current investigation, the shock-loading response of millrolled and heat-treated Uniloy 326 (thickness 60 mil) having a residual grain size of 1 to 2μ before shock loading was studied. Uniloy 326 is a two phase (microduplex) alloy consisting of 30% austenite (γ) in a ferrite (α) matrix; with the composition.3% Ti, 1% Mn, .6% Si,.05% C, 6% Ni, 26% Cr, balance Fe.


Author(s):  
Shiro Fujishiro

The Ti-6 wt.% Al-4 wt.% V commercial alloys have exhibited an improved formability at cryogenic temperature when the alloys were heat-treated prior to the tests. The author was interested in further investigating this unusual ductile behavior which may be associated with the strain-induced transformation or twinning of the a phase, enhanced at lower temperatures. The starting materials, supplied by RMI Co., Niles, Ohio were rolled mill products in the form of 40 mil sheets. The microstructure of the as-received materials contained mainly ellipsoidal α grains measuring between 1 and 5μ. The β phase formed an undefined grain boundary around the a grains. The specimens were homogenized at 1050°C for one hour, followed by aging at 500°C for two hours, and then quenched in water to produce the α/β mixed microstructure.


Sign in / Sign up

Export Citation Format

Share Document