scholarly journals Dietary Fiber from Tunisian Common Date Cultivars (Phoenix dactylifera L.): Chemical Composition, Functional Properties, and Antioxidant Capacity

2012 ◽  
Vol 60 (14) ◽  
pp. 3658-3664 ◽  
Author(s):  
Abdessalem Mrabet ◽  
Rocío Rodríguez-Arcos ◽  
Rafael Guillén-Bejarano ◽  
Nizar Chaira ◽  
Ali Ferchichi ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4854
Author(s):  
Ibna Suli Trejo Rodríguez ◽  
Luz Eugenia Alcántara Quintana ◽  
Paola Algara Suarez ◽  
Miguel Angel Ruiz Cabrera ◽  
Alicia Grajales Lagunes

The general aim of this study was to evaluate physicochemical properties, prebiotic activity and anticancer potential of jackfruit (Artocarpus heterophyllus) seed flour. The drying processes of jackfruit seeds were performed at 50, 60 and 70 °C in order to choose the optimal temperature for obtaining the flour based on drying time, polyphenol content and antioxidant capacity. The experimental values of the moisture ratio during jackfruit seed drying at different temperatures were obtained using Page’s equation to establish the drying time for the required moisture between 5 and 7% in the flour. The temperature of 60 °C was considered adequate for obtaining good flour and for performing its characterization. The chemical composition, total dietary fiber, functional properties and antioxidant capacity were then examined in the flour. The seed flour contains carbohydrates (73.87 g/100 g), dietary fiber (31 g/100 g), protein (14 g/100 g) and lipids (1 g/100 g). The lipid profile showed that the flour contained monounsaturated (4 g/100 g) and polyunsaturated (46 g/100 g) fatty acids. Sucrose, glucose, and fructose were found to be the predominant soluble sugars, and non-digestible oligosaccharides like 1-kestose were also found. The total polyphenol content was 2.42 mg of gallic acid/g of the sample; furthermore, the antioxidant capacity obtained by ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) was 901.45 µmol Trolox/100 g and 1607.87 µmol Trolox/100 g, respectively. The obtained flour exhibited good functional properties, such as water and oil absorption capacity, swelling power and emulsifier capacity. Additionally, this flour had a protective and preventive effect which is associated with the potential prebiotic activity in Lactobacillus casei and Bifidobacterium longum. These results demonstrate that jackfruit seed flour has good nutritional value and antioxidant and prebiotic activity, as well as potential protective effects and functional properties, making it an attractive food or ingredient in developing innovative functional products.


2007 ◽  
Vol 2 (2-3) ◽  
pp. 76-82 ◽  
Author(s):  
Imène Ben Thabet ◽  
Hamadi Attia ◽  
Souhail Besbes ◽  
Claude Deroanne ◽  
Frédéric Francis ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Quinatzin Zafra-Rojas ◽  
Nelly Cruz-Cansino ◽  
Alma Delgadillo-Ramírez ◽  
Ernesto Alanís-García ◽  
Javier Añorve-Morga ◽  
...  

Blackberry fruit processing generates residues comprised of peel, seeds, and pulp that are abundant in flavonoids, colorants, and organic acids. The objective of this study was to determine the organic acids, antioxidants, and dietary fiber content of blackberry residues and compare antioxidants and dietary fiber content of a prune-based commercial product. The ABTS, DPPH, and FRAP methodologies were used for antioxidant capacity. The blackberry residues exhibited a high amount of malic acid (5706.37 mg/100 g db), phenols (4016.43 mg GAE/100 g db), and anthocyanins content (364.53 mg/100 g db) compared with the commercial product. These compounds contributed to the antioxidant capacity (by ABTS) of both products but were 20 times higher in blackberry residues. The fruit residues were able to reduce iron (by FRAP) 4.4 times compared to the prune-based product. Total dietary fiber (44.26%) and functional properties as water retention capacity (2.94 g/g), swelling capacity (5.00 mL/g), and fat absorption capacity (1.98 mL/g) of blackberry residues were significantly higher than those of the commercial sample. The results demonstrated that, due to its antioxidant compounds and functional properties, the blackberry residue can be considered a source of components with potential benefit to human health.


2018 ◽  
Vol 6 (2) ◽  
pp. 470-480 ◽  
Author(s):  
Atina Rahmawati ◽  
Agnes Murdiati ◽  
Yustinus Marsono ◽  
Sri Anggrahini

The extraction of white jack bean (Canavalia ensiformis) protein isolate frequently leaves a lot of precipitates containing complex carbohydrates such as starch, dietary fiber, and resistant starch. Repeated autoclaving – cooling cycles can increase the content of soluble fiber and resistant starch. The aim of this study was to determine changes of dietary fiber and resistant starch content of complex carbohydrates of white jack bean during autoclaving-cooling cycles and characterization of its chemical composition and functional properties. The experiment was conducted by applying the autoclaving process at 121oC for 15 minutes followed by cooling at 4oC for 24 hours up to 5 times. Sample was taken from each cycle of autoclaving – cooling. The best treatment was the sample with the highest total soluble fiber and resistant starch content. The best sample will be determined its chemical composition and functional properties. This study used a one-way analysis of variance to subject the data according to Completely Randomized Design. Duncan’s Multiple Range Test was applied to determine significant differences among 5 treatment means at the 5% significance level. The highest value of total soluble fiber and resistant starch content was obtained from autoclaving-cooling cycles of 3 times. The treatment increased the soluble fiber and resistant starch by 14.37% and 18.34%, respectively, but decreased 14.41% insoluble fiber. The complex carbohydrates of white jack bean treated with autoclaving-cooling cycles of 3 times had chemical composition: 10.68% moisture content, 0.92% ash content, 0.02% fat content, 1.85% protein content, 97.20% carbohydrate content (by difference), 68.42% starch content, and 14.90 ppm HCN. It also had functional properties: 351.67% WHC, 115.67% OHC, 775.33% SC, 84.63 meq/kg CEC. The conclusion was the white jack bean carbohydrate complex treated with 3 times autoclaving-cooling cycles was the best treatment to produce the highest value of total soluble fiber and resistant starch content. We suggest to examine another autoclaving temperature and cooling time to compare the result.


Sign in / Sign up

Export Citation Format

Share Document