Fidelity of Phenylalanyl-tRNA Synthetase in Binding the Natural Amino Acids

2003 ◽  
Vol 107 (41) ◽  
pp. 11549-11557 ◽  
Author(s):  
Peter M. Kekenes-Huskey ◽  
Nagarajan Vaidehi ◽  
Wely B. Floriano ◽  
William A. Goddard
2019 ◽  
Vol 20 (3) ◽  
pp. 492 ◽  
Author(s):  
Jiro Adachi ◽  
Kazushige Katsura ◽  
Eiko Seki ◽  
Chie Takemoto ◽  
Mikako Shirouzu ◽  
...  

Cell-free protein synthesis is useful for synthesizing difficult targets. The site-specific incorporation of non-natural amino acids into proteins is a powerful protein engineering method. In this study, we optimized the protocol for cell extract preparation from the Escherichia coli strain RFzero-iy, which is engineered to lack release factor 1 (RF-1). The BL21(DE3)-based RFzero-iy strain exhibited quite high cell-free protein productivity, and thus we established the protocols for its cell culture and extract preparation. In the presence of 3-iodo-l-tyrosine (IY), cell-free protein synthesis using the RFzero-iy-based S30 extract translated the UAG codon to IY at various sites with a high translation efficiency of >90%. In the absence of IY, the RFzero-iy-based cell-free system did not translate UAG to any amino acid, leaving UAG unassigned. Actually, UAG was readily reassigned to various non-natural amino acids, by supplementing them with their specific aminoacyl-tRNA synthetase variants (and their specific tRNAs) into the system. The high incorporation rate of our RFzero-iy-based cell-free system enables the incorporation of a variety of non-natural amino acids into multiple sites of proteins. The present strategy to create the RFzero strain is rapid, and thus promising for RF-1 deletions of various E. coli strains genomically engineered for specific requirements.


2006 ◽  
Vol 19 (5) ◽  
pp. 195-203 ◽  
Author(s):  
Christopher L. McClendon ◽  
Nagarajan Vaidehi ◽  
Victor Wai Tak Kam ◽  
Deqiang Zhang ◽  
William A. Goddard

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hongxia Zhao ◽  
Wenlong Ding ◽  
Jia Zang ◽  
Yang Yang ◽  
Chao Liu ◽  
...  

AbstractSite-specific incorporation of unnatural amino acids (UAAs) with similar incorporation efficiency to that of natural amino acids (NAAs) and low background activity is extremely valuable for efficient synthesis of proteins with diverse new chemical functions and design of various synthetic auxotrophs. However, such efficient translation systems remain largely unknown in the literature. Here, we describe engineered chimeric phenylalanine systems that dramatically increase the yield of proteins bearing UAAs, through systematic engineering of the aminoacyl-tRNA synthetase and its respective cognate tRNA. These engineered synthetase/tRNA pairs allow single-site and multi-site incorporation of UAAs with efficiencies similar to those of NAAs and high fidelity. In addition, using the evolved chimeric phenylalanine system, we construct a series of E. coli strains whose growth is strictly dependent on exogenously supplied of UAAs. We further show that synthetic auxotrophic cells can grow robustly in living mice when UAAs are supplemented.


2018 ◽  
Vol 20 (1) ◽  
pp. 29
Author(s):  
Andrew Lin ◽  
Qing Lin

The orthogonal pyrrolysyl-tRNA synthetase/tRNACUA pair and their variants have provided powerful tools for expanding the genetic code to allow for engineering of proteins with augmented structure and function not present in Nature. To expedite the discovery of novel pyrrolysyl-tRNA synthetase (PylRS) variants that can charge non-natural amino acids into proteins site-specifically, herein we report a streamlined protocol for rapid construction of the pyrrolysyl-tRNA synthetase library, selection of the functional PylRS mutants using fluorescence-activated cell sorting, and subsequent validation of the selected PylRS mutants through direct expression of the fluorescent protein reporter using a single bacterial strain. We expect that this protocol should be generally applicable to rapid identification of the functional PylRS mutants for charging a wide range of non-natural amino acids into proteins.


1998 ◽  
Vol 42 (9) ◽  
pp. 2197-2205 ◽  
Author(s):  
Karl Ziegelbauer ◽  
Peter Babczinski ◽  
Wolfgang Schönfeld

ABSTRACT BAY 10-8888 is a cyclic β-amino acid that is related to cispentacin and that has antifungal activity. Candida albicans cells accumulated BAY 10-8888 intracellularly to a concentration about 200 that in the medium when grown in media with a variety of nitrogen sources. In complex growth medium, BAY 10-8888 transport activity was markedly reduced and was paralleled by a decrease in its antifungal activity. Uptake of BAY 10-8888 was mediated by an H+-coupled amino acid transporter with specificity for branched-chain amino acids (isoleucine, leucine, and valine) and showed a KT (Michaelis constant of the transport reaction) of 0.95 mM and a V max of 18.9 nmol × min−1 × 107cells−1. Similar to the transport of natural amino acids in Saccharomyces cerevisiae, the transport of BAY 10-8888 into the cell was unidirectional. Efflux occurred by diffusion and was not carrier mediated. Inside the cell BAY 10-8888 inhibited specifically isoleucyl-tRNA synthetase, resulting in inhibition of protein synthesis and cell growth. Intracellular isoleucine reversed BAY 10-8888-induced growth inhibition. BAY 10-8888 was not incorporated into proteins. BAY 10-8888 inhibited isoleucyl-tRNA synthetase with the same concentration dependency as protein biosynthesis in intact cells assuming 200-fold accumulation.


Sign in / Sign up

Export Citation Format

Share Document