Quantifying the Hydrophobic Effect. 1. A Computer Simulation−Molecular-Thermodynamic Model for the Self-Assembly of Hydrophobic and Amphiphilic Solutes in Aqueous Solution

2007 ◽  
Vol 111 (5) ◽  
pp. 1025-1044 ◽  
Author(s):  
Brian C. Stephenson ◽  
Arthur Goldsipe ◽  
Kenneth J. Beers ◽  
Daniel Blankschtein
Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3598
Author(s):  
Nirmal K. Shee ◽  
Hee-Joon Kim

A series of porphyrin triads (1–6), based on the reaction of trans-dihydroxo-[5,15-bis(3-pyridyl)-10,20-bis(phenyl)porphyrinato]tin(IV) (SnP) with six different phenoxy Zn(II)-porphyrins (ZnLn), was synthesized. The cooperative metal–ligand coordination of 3-pyridyl nitrogens in the SnP with the phenoxy Zn(II)-porphyrins, followed by the self-assembly process, leads to the formation of nanostructures. The red-shifts and remarkable broadening of the absorption bands in the UV–vis spectra for the triads in CHCl3 indicate that nanoaggregates may be produced in the self-assembly process of these triads. The emission intensities of the triads were also significantly reduced due to the aggregation. Microscopic analyses of the nanostructures of the triads reveal differences due to the different substituents on the axial Zn(II)-porphyrin moieties. All these nanomaterials exhibited efficient photocatalytic performances in the degradation of rhodamine B (RhB) dye under visible light irradiation, and the degradation efficiencies of RhB in aqueous solution were observed to be 72~95% within 4 h. In addition, the efficiency of the catalyst was not impaired, showing excellent recyclability even after being applied for the degradation of RhB in up to five cycles.


Nanoscale ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 388-396
Author(s):  
Indra Memdi Khoris ◽  
Akhilesh Babu Ganganboina ◽  
Tetsuro Suzuki ◽  
Enoch Y. Park

Inspired by the self-assembly approach, in this work, the chromogen, 3,3′,5,5′-tetramethylbenzidine (TMB), was successfully co-precipitated in aqueous solution to form collective nanoparticles (NPs) of signal molecules (TMB-NPs).


2020 ◽  
Vol 21 (22) ◽  
pp. 8557
Author(s):  
Marco Savioli ◽  
Manuela Stefanelli ◽  
Gabriele Magna ◽  
Francesca Zurlo ◽  
Maria Federica Caso ◽  
...  

Supramolecular chirality is one of the most important issues in different branches of science and technology, as stereoselective molecular recognition, catalysis, and sensors. In this paper, we report on the self-assembly of amphiphilic porphyrin derivatives possessing a chiral information on the periphery of the macrocycle (i.e., D- or L-proline moieties), in the presence of chiral amines as co-solute, such as chiral benzylamine derivatives. The aggregation process, steered by hydrophobic effect, has been studied in aqueous solvent mixtures by combined spectroscopic and topographic techniques. The results obtained pointed out a dramatic effect of these ligands on the morphology and on the supramolecular chirality of the final self-assembled structures. Scanning electron microscopy topography, as well as fluorescence microscopy studies revealed the formation of rod-like structures of micrometric size, different from the fractal structures formerly observed when the self-assembly process is carried out in the absence of chiral amine co-solutes. On the other hand, comparative experiments with an achiral porphyrin analogue strongly suggested that the presence of the prolinate moiety is mandatory for the achievement of the observed highly organized suprastructures. The results obtained would be of importance for unraveling the intimate mechanisms operating in the selection of the homochirality, and for the preparation of sensitive materials for the detection of chiral analytes, with tunable stereoselectivity and morphology.


2013 ◽  
Vol 710 ◽  
pp. 716-719
Author(s):  
Bo Du ◽  
Zi Lu Wang ◽  
Xue Hao He

Understanding how nanoparticles self-assemble into specific structures is important in biology. The self-assembly structures of disc-shaped nanoparticles are investigated using Gay Berne potential. Through the simulated annealing Monte Carlo simulation underNVTcondition, we found that various nanostructures such as nematic phase and isotropic phase are discovered. The formation mechanism of these novel nanostructures is discussed.


2018 ◽  
Vol 9 (5) ◽  
pp. 1317-1322 ◽  
Author(s):  
Kenji Caprice ◽  
Marion Pupier ◽  
Anneli Kruve ◽  
Christoph A. Schalley ◽  
Fabien B. L. Cougnon

The hydrophobic effect promotes the self-assembly of imine-based [2]catenanes in pure water.


ChemistryOpen ◽  
2017 ◽  
Vol 6 (2) ◽  
pp. 266-272 ◽  
Author(s):  
Jurgen Schill ◽  
Lech-Gustav Milroy ◽  
Jody A. M. Lugger ◽  
Albertus P. H. J. Schenning ◽  
Luc Brunsveld

Sign in / Sign up

Export Citation Format

Share Document