Effect of Molecular Weight and Degree of Substitution of a Sodium-Carboxymethyl Cellulose Binder on Li4Ti5O12 Anodic Performance

2013 ◽  
Vol 117 (9) ◽  
pp. 4404-4409 ◽  
Author(s):  
Bo-Ram Lee ◽  
Eun-Suok Oh
2018 ◽  
Vol 11 (3) ◽  
pp. 124
Author(s):  
Shella Permatasari Santoso ◽  
Niko Sanjaya ◽  
Aning Ayucitra

The use of cassava peels as raw material for Sodium Carboxymethyl Cellulose productionCassava peels are abundantly available and may be used as an lowcost cellulose source (80-85% cellulose per weight cassava peel). the study was to evaluate the effect of the concentration of sodium hydroxide, sodium chloroacetate, and temperature reaction on the sodium carboxymethyl cellulose (sodium-CMC) characteristics i.e. yield, purity, and degree of substitution in sodium-CMC preparation.  Sodium-CMC functional group was determined using FTIR spectrophotometer. Cassava peels was dried and grounded to 50 mesh. Lignin was eliminated from cassava peel by extraction of grounded cassava peel with 10% NaOH at 35 °C for 5 h. Cassava peel free lignin was then re-extracted using 10% of acetic acid and sodium chloride at 75 °C for 1 h, thus cellulose free hemicellulose was obtained. Alkalization at 30 °C for 90 min was performed by adding sodium hydroxyde at 10-40% to cellulose using isopropyl alcohol solvent. Following this, etherification was conducted by adding sodium chloroacetate of 1-5 g at 50-80 °C for 6 h. As result, the highest purity of sodium-CMC (96.20%) was obtained from alkalization using 20% of sodium hydroxide and etherification using 3 g sodium chloroacetate at 70 °C. Sodium-CMC yield was 22% and degree of substitution 0.705.Keywords: cassava peel, carboxymethyl cellulose, sodium-CMC, etherification AbstrakKulit singkong merupakan sumber selulosa yang berlimpah dan murah, dengan kadar selulosa 80-85% dari berat kulit singkong. Tujuan penelitian ini adalah memanfaatkan selulosa dalam kulit singkong sebagai bahan baku pembuatan natrium karboksimetil selulosa (Na-CMC), mempelajari pengaruh natrium hidroksida, natrium kloroasetat serta suhu pada karakteristik Na-CMC seperti perolehan, kemurnian, dan derajat substitusi, serta menentukan kondisi operasi optimum untuk pembuatan Na-CMC berdasarkan kemurnian Na-CMC terbesar. Gugus fungsi Na-CMC ditentukan menggunakan Fourier Transform Infrared Spectra. Mula-mula, kulit singkong dikeringkan dan dihancurkan sehingga berukuran 50 mesh. Kulit singkong diekstraksi dengan NaOH 10% di suhu 35 °C selama 5 jam, untuk melarutkan lignin. Kulit singkong bebas lignin diekstrak dengan asam asetat 10% dan natrium klorida dengan pemanasan 750 °C selama 1 jam untuk melarutkan hemiselulosa sehingga didapatkan selulosa. Alkalisasi dilakukan dengan mereaksikan selulosa dengan NaOH 10-40% dengan pelarut isopropil alkohol pada suhu 30 °C selama 90 menit, dilanjutkan eterifikasi dengan natrium kloroasetat 1-5 g pada suhu 50-80 °C selama 6 jam. Berdasarkan hasil penelitian, karakteristik Na-CMC terbaik didapatkan dari alkalisasi selulosa menggunakan NaOH 20% serta eterifikasi menggunakan 3 g natrium kloroasetat pada suhu 70 °C. Perolehan Na-CMC yang didapat adalah sebesar 22%, kemurnian 96,20%, derajat substitusi 0,705; termasuk dalam grade kedua menurut SNI 06-3736-1995.Kata kunci: kulit singkong, karboksimetil selulosa, Na-CMC, eterifikasi


2014 ◽  
Vol 997 ◽  
pp. 169-172 ◽  
Author(s):  
Wei Qing Chen ◽  
Dong Ping Lou

Bamboo shaving is a by-product of bamboo industry, often be discarded or incinerated. In this work, sodium carboxymethyl cellulose (CMC) was prepared from pretreated bamboo shaving as raw material, while the main reaction conditions affecting product properties such as pretreated method, alkalization temperature and time, etherified temperature and time were studied. The results showed that the optimized pretreated conditions for bamboo cellulose were soaked in 15% NaOH at 1:8 (w/v) ratio of cellulose to solvent for 1 h at 95°C, The content of α-cellulose reach to 94.25%. The optimized reaction conditions for CMC synthesis were alkalified at 30°C for 70 min and etherified at 55°C for 90min; afterwards, temperature was kept at 70°C for 10min. Under these conditions, viscosity of 1% CMC aqueous solution was above 260 mPa·s, degree of substitution (DS)≥0.8, and content of chloride and moisture were less than 1.2 % and 10 % respectively.


1995 ◽  
Vol 74 (06) ◽  
pp. 1452-1456 ◽  
Author(s):  
Johannes Treib ◽  
Anton Haass ◽  
Gerhard Pindur ◽  
Ulrich T Seyfert ◽  
Wolfgang Treib ◽  
...  

SummaryThe plasma clearance of hydroxyethyl starch (HES) depends on the initial molecular weight and the degree of substitution. So far, little attention has been paid to the clinical relevance of the C2/C6 substitution ratio of hydroxyethyl starch.10 patients with cerebrovascular circulatory disturbance received hemodilution therapy for 10 days, consisting of 10% HES 200/0.5 (mean molecular weight 200 kD, degree of substitution 0.5) with a C2/C6 ratio of 13.4. A second group of 10 patients received a starch solution with identical initial molecular weight and degree of substitution but with a C2/C6 ratio of 5.7.After the administration of a single dose, no significant differences between the two groups were observed. After repeated administration, significant differences could be detected in hemorheology, coagulation and elimination (p<0.01). The larger C2/C6 ratio led to a higher intravascular mean molecular weight (95 vs. 84 kD), which in turn led to a higher increase in serum concentration during the therapy (14.7 vs.8.6 mg/ml). Hematocrit was lowered more (-30,5 vs. -23,5%) and plasma viscosity was increased more. There was also a more pronounced increase in partial thromboplastin time (+30% vs. +13%) and a factor of 2 larger decrease of factor VIII/von Willebrand factor-complex (p <0.01), which exceeded the dilution effect.The higher C2/C6 ratio of HES 200/0.5/13.4 slows down enzymatic degradation. After repeated administration of this starch, large molecules accumulate which are inefficiently degraded. The same effect has been observed after therapy with highly-substituted HES. This accumulation of large molecules leads to a beneficial longer lasting volume effect. The disadvantages include an increase in plasma viscosity and coagulation disturbances, which cannot be explained with the respective dilution effect alone. For these reasons, the C2/C6 ratio is of clinical relevance and should be included in the product labeling in the future.


2009 ◽  
Vol 40 (2) ◽  
pp. 19-26 ◽  
Author(s):  
Soojung LEE ◽  
Yasutsugu MIWA ◽  
Ryohei NISHIMURA ◽  
Ung-il CHUNG ◽  
Shigeki SUZUKI ◽  
...  

2020 ◽  
Vol 23 (03) ◽  
pp. 33-49
Author(s):  
Ni’matul Mauludiyah ◽  
Devi Ayu Aprillia ◽  
Viddy Agustian Rosyidi ◽  
Lusia Oktora Ruma Kumala Sari

Sign in / Sign up

Export Citation Format

Share Document