Catalytic Effect of Water, Formic Acid, or Sulfuric Acid on the Reaction of Formaldehyde with OH Radicals

2014 ◽  
Vol 118 (26) ◽  
pp. 4797-4807 ◽  
Author(s):  
Weichao Zhang ◽  
Benni Du ◽  
Zhenglong Qin
2020 ◽  
Vol 22 (44) ◽  
pp. 25638-25651
Author(s):  
Mark E. Wolf ◽  
Justin M. Turney ◽  
Henry F. Schaefer

The formic acid decomposition pathways which can be catalyzed by the presence of a water molecule.


Author(s):  
Parandaman Arathala ◽  
Rabi Ann Musah

CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculations were performed on the addition of amines [i.e. ammonia (NH3), methyl amine (MA), and dimethyl amine (DMA)] to carbonyl sulfide (OCS), followed by transfer of the amine H-atom...


2016 ◽  
Vol 18 (26) ◽  
pp. 17414-17427 ◽  
Author(s):  
Tianlei Zhang ◽  
Chen Yang ◽  
Xukai Feng ◽  
Jiaxin Kang ◽  
Liang Song ◽  
...  

Catalyst X (X = H2O, (H2O)2and (H2O)3) is incorporated into the channel of H2S +3O2formation and the catalytic effect of water, water dimers and water trimers is mainly taken from the contribution of a single water vapor molecule.


2021 ◽  
Vol 37 (2) ◽  
pp. 321-329
Author(s):  
Nilesh Takale ◽  
Neelakandan Kaliyaperumal ◽  
Gopalakrishnan Mannathusamy ◽  
Rajarajan Govindasamy

The Pharmaceutical industry uses formic acid in the manufacturing of various drug substances or API. At the time of manufacturing of API formic acid is use as an oxidizing agent. Formic acid is the simplest carboxylic acid. It also called methanoic acid.Formic acid present in API at high concentrations is very hazardous but in low concentrations is very beneficial. The developed and validated method was short, precise, cost effective and reproducible with FID detector and easy to use. The method is a selective and superficial analytical method for determination of formic acid in different drug substances. We report here the development and validation study of headspace gas chromatographic method to determine formic acid in different drug substances we are reported here. As per this method, the drug sample was dissolved in 0.1% (v/v) of concentrated sulfuric acid in isopropyl alcohol (IPA) in a GC headspace vial and 0.1% (v/v) of concentrated sulfuric acid in isopropyl alcohol used as a diluent. A AB-Inowax capillary column (30 m x 0.32 mm I.D. and 0.5 µm film thickness) was used under gradient conditions with FID. The formic acid peak was well separated from all other solvents that are used in synthesis of particular drug substance. The LOD and LOQof the method for formic acid are 82 ppm and 249 ppm respectively. Formic acid are low toxic class-III solvent as per ICH guideline.


2003 ◽  
Vol 68 (11) ◽  
pp. 849-857 ◽  
Author(s):  
Amalija Tripkovic ◽  
Ksenija Popovic ◽  
Jelena Lovic

The oxidation of formic acid was studied at supported Pt catalyst (47.5 wt%. Pt) and a low-index single crystal electrodes in sulfuric acid. The supported Pt catalyst was characterized by the TEM and HRTEM techniques. The mean Pt particle diameter, calculated from electrochemical measurements fits well with Pt particle size distribution determined by HRTEM. For the mean particle diameter the surface averaged distribution of low-index single crystal facets was established. Comparison of the activities obtained at Pt supported catalyst and low-index Pt single crystal electrodes revealed that Pt(111) plane is the most active in the potential region relevant for fuel cell applications.


2021 ◽  
Vol 21 (17) ◽  
pp. 13333-13351
Author(s):  
Alexandre Kukui ◽  
Michel Chartier ◽  
Jinhe Wang ◽  
Hui Chen ◽  
Sébastien Dusanter ◽  
...  

Abstract. Reaction of stabilized Criegee intermediates (SCIs) with SO2 was proposed as an additional pathway of gaseous sulfuric acid (H2SO4) formation in the atmosphere, supplementary to the conventional mechanism of H2SO4 production by oxidation of SO2 in reaction with OH radicals. However, because of a large uncertainty in mechanism and rate coefficients for the atmospheric formation and loss reactions of different SCIs, the importance of this additional source is not well established. In this work, we present an estimation of the role of SCIs in H2SO4 formation at a western Mediterranean (Cape Corsica) remote site, where comprehensive field observations including gas-phase H2SO4, OH radicals, SO2, volatile organic compounds (VOCs) and aerosol size distribution measurements were performed in July–August 2013 as a part of the project ChArMEx (Chemistry-Aerosols Mediterranean Experiment). The measurement site was under strong influence of local emissions of biogenic volatile organic compounds, including monoterpenes and isoprene generating SCIs in reactions with ozone, and, hence, presenting an additional source of H2SO4 via SO2 oxidation by the SCIs. Assuming the validity of a steady state between H2SO4 production and its loss by condensation on existing aerosol particles with a unity accommodation coefficient, about 90 % of the H2SO4 formation during the day could be explained by the reaction of SO2 with OH. During the night the oxidation of SO2 by OH radicals was found to contribute only about 10 % to the H2SO4 formation. The accuracy of the derived values for the contribution of OH + SO2 reaction to the H2SO4 formation is limited mostly by a large, at present factor of 2, uncertainty in the OH + SO2 reaction rate coefficient. The contribution of the SO2 oxidation by SCIs to the H2SO4 formation was evaluated using available measurements of unsaturated VOCs and steady-state SCI concentrations estimated by adopting rate coefficients for SCI reactions based on structure–activity relationships (SARs). The estimated concentration of the sum of SCIs was in the range of (1–3) × 103 molec. cm−3. During the day the reaction of SCIs with SO2 was found to account for about 10 % and during the night for about 40 % of the H2SO4 production, closing the H2SO4 budget during the day but leaving unexplained about 50 % of the H2SO4 formation during the night. Despite large uncertainties in used kinetic parameters, these results indicate that the SO2 oxidation by SCIs may represent an important H2SO4 source in VOC-rich environments, especially during nighttime.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Davood Habibi ◽  
Payam Rahmani ◽  
Ziba Akbaripanah

N-formylation of primary and secondary amines was carried out with formic acid in the presence of silica sulfuric acid under solvent-free conditions to give the corresponding formamides in excellent yield and short reaction times.


Sign in / Sign up

Export Citation Format

Share Document