Ground State Properties of the Nucleic Acid Constituents Studied by Density Functional Calculations. I. Conformational Features of Ribose, Dimethyl Phosphate, Uridine, Cytidine, 5‘-Methyl Phosphate−Uridine, and 3‘-Methyl Phosphate−Uridine

1999 ◽  
Vol 103 (43) ◽  
pp. 8716-8724 ◽  
Author(s):  
Nicolas Leulliot ◽  
Mahmoud Ghomi ◽  
Giovanni Scalmani ◽  
Gaston Berthier
2019 ◽  
Vol 28 (10) ◽  
pp. 1950078
Author(s):  
Y. El Bassem ◽  
M. Oulne

In this work, the ground state properties of the platinum isotopic chain, [Formula: see text]Pt are studied within the covariant density functional theory. The calculations are carried out for a large number of even–even Pt isotopes by using the density-dependent point-coupling and the density-dependent meson-exchange effective interactions. All ground state properties such as the binding energy, separation energy, two-neutron shell gap, root mean square (rms)-radii for neutrons and protons and quadrupole deformation are discussed and compared with available experimental data, and with the predictions of some nuclear models such as the Relativistic Mean Field (RMF) model with NL3 functional and the Hartree–Fock–Bogoliubov (HFB) method with SLy4 Skyrme force. The shape phase transition for Pt isotopic chain is also studied. Its corresponding total energy curves as well as the potential energy surfaces confirm the transition from prolate to oblate shapes at [Formula: see text]Pt contrary to some studies predictions and in agreement with others. Overall, a good agreement is found between the calculated and experimental results wherever available.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6128
Author(s):  
Blaise A. Ayirizia ◽  
Janee’ S. Brumfield ◽  
Yuriy Malozovsky ◽  
Diola Bagayoko

We report the results from self-consistent calculations of electronic, transport, and bulk properties of beryllium sulfide (BeS) in the zinc-blende phase, and employed an ab-initio local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). We obtained the ground state properties of zb-BeS with the Bagayoko, Zhao, and Williams (BZW) computational method, as enhanced by Ekuma and Franklin (BZW-EF). Our findings include the electronic energy bands, the total (DOS) and partial (pDOS) densities of states, electron and hole effective masses, the equilibrium lattice constant, and the bulk modulus. The calculated band structure clearly shows that zb-BeS has an indirect energy band gap of 5.436 eV, from Γ to a point between Γ and X, for an experimental lattice constant of 4.863 Å. This is in excellent agreement with the experiment, unlike the findings of more than 15 previous density functional theory (DFT) calculations that did not perform the generalized minimization of the energy functional, required by the second DFT theorem, which is inherent to the implementation of our BZW-EF method.


Sign in / Sign up

Export Citation Format

Share Document