Use of Block Copolymer-Stabilized Cadmium Sulfide Quantum Dots as Novel Tracers for Laser Scanning Confocal Fluorescence Imaging of Blend Morphology in Polystyrene/Poly(methyl methacrylate) Films

Langmuir ◽  
2005 ◽  
Vol 21 (6) ◽  
pp. 2465-2473 ◽  
Author(s):  
C.-W. Wang ◽  
M. G. Moffitt
Author(s):  
Tytus Bernas ◽  
Elikplimi K. Asem ◽  
J. Paul Robinson ◽  
Peter R. Cook ◽  
Jurek W. Dobrucki

2013 ◽  
Vol 46 (4) ◽  
pp. 1261-1267 ◽  
Author(s):  
Qi Zhang ◽  
Guoqiang Yu ◽  
Wen-Jun Wang ◽  
Haomiao Yuan ◽  
Bo-Geng Li ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1387 ◽  
Author(s):  
M. Galip Icduygu ◽  
Meltem Asilturk ◽  
M. Akif Yalcinkaya ◽  
Youssef K. Hamidi ◽  
M. Cengiz Altan

The three-dimensional nano-morphology of poly(methyl methacrylate; PMMA) microcapsules filled with carbon nanotubes (CNTs) and epoxy resin were investigated by various microscopy methods, including a novel, laser scanning confocal microscopy (LSCM) method. Initially, PMMA microcapsules containing various amounts of CNTs were synthesized by a solvent evaporation method. Scanning electron microscopy analysis showed that pore-free, smooth-surface microcapsules formed with various types of core-shell morphologies. The average size of CNT/epoxy/PMMA microcapsules was shown to decrease from ~52 μm to ~15 μm when mixing speed during synthesis increased from 300 rpm to 1000 rpm. In general, the presence of CNTs resulted in slightly larger microcapsules and higher variations in size. Moreover, three-dimensional scans obtained from confocal microscopy revealed that higher CNT content increased the occurrence and size of CNT aggregates inside the microcapsules. Entrapped submicron air bubbles were also observed inside most microcapsules, particularly within those with higher CNT content.


Sign in / Sign up

Export Citation Format

Share Document