Evaluation of the Role of Au in Improving Catalytic Activity of Ni Nanoparticles for the Formation of One-Dimensional Carbon Nanostructures

Nano Letters ◽  
2011 ◽  
Vol 11 (6) ◽  
pp. 2464-2471 ◽  
Author(s):  
Renu Sharma ◽  
See-Wee Chee ◽  
Andrew Herzing ◽  
Ryan Miranda ◽  
Peter Rez
2010 ◽  
Vol 132 ◽  
pp. 205-219 ◽  
Author(s):  
Raul Pérez-Hernández ◽  
A. Gutiérrez-Martínez ◽  
Alvaro Mayoral ◽  
F. Leonard Deepak ◽  
Ma. E. Fernández-García ◽  
...  

One dimensional (1-D) and three dimensional (3-D) ZnO were growth by a hydrothermal method. ZnO 1-D was employed as a support for silver nanoparticles in order to design a new catalyst and used on the steam reforming of methanol (SRM) reaction for H2 production. The catalytic activity of the Ag/ZnO sample with low content of Ag showed better performance on the SRM reaction than on high silver loading catalyst. So, the sample with small Ag particle size showed best performance in methanol conversion than catalyst with big Ag particle size, this finding could be attributed to the high ZnO/Ag ratio. According to results of SEM and TEM techniques the catalytic activity: methanol conversion, H2 and low CO production observed on the Ag/ZnO 1-D catalyst occurs in the edge sites rather than the rim sites. The role of Ag is to accept the hydrogen to be released to the gas phase. In addition, the 1.5Ag/ZnO 1-D catalyst showed good stability during the reaction.


MRS Bulletin ◽  
2006 ◽  
Vol 31 (3) ◽  
pp. 218-223 ◽  
Author(s):  
Apparao M. Rao ◽  
Xiaohua Ji ◽  
Terry M. Tritt

AbstractOver a decade ago, Dresselhaus predicted that low-dimensional systems would one day serve as a route to enhanced thermoelectric performance.In this article, recent results in the thermoelectric properties of nanowires and nanotubes are discussed. Various synthesis techniques will be presented, including chemical vapor deposition for the growth of thermoelectric nanostructures in templated alumina.Electrical transport measurements of carbon nanostructures, such as resistivity and thermopower, have revealed some very interesting thermoelectric properties.Challenges still remain concerning the measurement of individual nanostructures such as nanowires.Much work has been performed on the thermoelectric properties of carbon nanotubes, and these results will be highlighted.In addition, routes for enhanced thermoelectric materials have focused on incorporating nanostructures within the bulk materials.The role of these “hybrid composite structures” based on nanomaterials incorporated into the bulk matrix and the potential for enhanced performance are discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-5
Author(s):  
Tokushi Kizuka ◽  
Kun'ichi Miyazawa ◽  
Akira Akagawa

Nickel- (Ni) doped C60nanowhiskers (NWs) were synthesized by a liquid-liquid interfacial precipitation method using a C60-saturated toluene solution and isopropanol with Ni nitrate hexahydrate Ni(NO3)2·6H2O. By varying the heating temperature of Ni-doped C60NWs, two types of one-dimensional carbon nanostructures were produced. By heating the NWs at 973 and 1173 K, carbon nanocapsules (CNCs) that encapsulated Ni nanoparticles were produced. The Ni-encapsulated CNCs joined one dimensionally to form chain structures. Upon heating the NWs to 1373 K, cup-stacked-type carbon nanotubes were synthesized.


2016 ◽  
Vol 10 (3) ◽  
pp. 259-270
Author(s):  
Ludmila Matienko ◽  
◽  
Larisa Mosolova ◽  
Vladimir Binyukov ◽  
Gennady Zaikov ◽  
...  

Mechanism of catalysis with binary and triple catalytic systems based on redox inactive metal (lithium) compound {LiSt+L2} and {LiSt+L2+PhOH} (L2=DMF or HMPA), in the selective ethylbenzene oxidation by dioxygen into -phenylethyl hydroperoxide is researched. The results are compared with catalysis by nickel-lithium triple system {NiII(acac)2+LiSt+PhOH} in selective ethylbenzene oxidation to PEH. The role of H-bonding in mechanism of catalysis is discussed. The possibility of the stable supramolecular nanostructures formation on the basis of triple systems, {LiSt+L2+PhOH}, due to intermolecular H-bonds, is researched with the AFM method.


2011 ◽  
Vol 35 (1) ◽  
pp. 15-27
Author(s):  
Zoran Ivić ◽  
Željko Pržulj

Adiabatic large polarons in anisotropic molecular crystals We study the large polaron whose motion is confined to a single chain in a system composed of the collection of parallel molecular chains embedded in threedimensional lattice. It is found that the interchain coupling has a significant impact on the large polaron characteristics. In particular, its radius is quite larger while its effective mass is considerably lighter than that estimated within the one-dimensional models. We believe that our findings should be taken into account for the proper understanding of the possible role of large polarons in the charge and energy transfer in quasi-one-dimensional substances.


2021 ◽  
Author(s):  
Petar Djinović ◽  
Janez Zavašnik ◽  
Janvit Teržan ◽  
Ivan Jerman

AbstractCeO2, V2O5 and CeVO4 were synthesised as bulk oxides, or deposited over activated carbon, characterized by XRD, HRTEM, CO2-TPO, C3H8-TPR, DRIFTS and Raman techniques and tested in propane oxidative dehydrogenation using CO2. Complete oxidation of propane to CO and CO2 is favoured by lattice oxygen of CeO2. The temperature programmed experiments show the ~ 4 nm AC supported CeO2 crystallites become more susceptible to reduction by propane, but less prone to re-oxidation with CO2 compared to bulk CeO2. Catalytic activity of CeVO4/AC catalysts requires a 1–2 nm amorphous CeVO4 layer. During reaction, the amorphous CeVO4 layer crystallises and several atomic layers of carbon cover the CeVO4 surface, resulting in deactivation. During reaction, V2O5 is irreversibly reduced to V2O3. The lattice oxygen in bulk V2O5 favours catalytic activity and propene selectivity. Bulk V2O3 promotes only propane cracking with no propene selectivity. In VOx/AC materials, vanadium carbide is the catalytically active phase. Propane dehydrogenation over VC proceeds via chemisorbed oxygen species originating from the dissociated CO2. Graphic Abstract


2007 ◽  
Vol 142 (3-4) ◽  
pp. 477-480
Author(s):  
Noriaki Matsunaga ◽  
Katutosi Hino ◽  
Takamichi Ohta ◽  
Katsumi Yamashita ◽  
Kazushige Nomura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document