Three-Dimensional Self-Assembly of Graphene Oxide and DNA into Multifunctional Hydrogels

ACS Nano ◽  
2010 ◽  
Vol 4 (12) ◽  
pp. 7358-7362 ◽  
Author(s):  
Yuxi Xu ◽  
Qiong Wu ◽  
Yiqing Sun ◽  
Hua Bai ◽  
Gaoquan Shi
Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 13 ◽  
Author(s):  
Bin Zhang ◽  
Jaehyun Lee ◽  
Mincheol Kim ◽  
Naeeung Lee ◽  
Hyungdong Lee ◽  
...  

The macroscopic assembly of two-dimensional materials into a laminar structure has received considerable attention because it improves both the mechanical and chemical properties of the original materials. However, conventional manufacturing methods have certain limitations in that they require a high temperature process, use toxic solvents, and are considerably time consuming. Here, we present a new system for the self-assembly of layer-by-layer (LBL) graphene oxide (GO) via an electrohydrodynamic (EHD) jet printing technique. During printing, the orientation of GO flakes can be controlled by the velocity distribution of liquid jet and electric field-induced alignment spontaneously. Closely-packed GO patterns with an ordered laminar structure can be rapidly realized using an interfacial assembly process on the substrates. The surface roughness and electrical conductivity of the LBL structure were significantly improved compared with conventional dispensing methods. We further applied this technique to fabricate a reduced graphene oxide (r-GO)-based supercapacitor and a three-dimensional (3D) metallic grid hybrid ammonia sensor. We present the EHD-assisted assembly of laminar r-GO structures as a new platform for preparing high-performance energy storage devices and sensors.


RSC Advances ◽  
2016 ◽  
Vol 6 (61) ◽  
pp. 56278-56286 ◽  
Author(s):  
Lei Chen ◽  
Zhang-Run Xu

A 3D nickel-doped reduced graphene oxide aerogel was prepared by one-step reduction and self-assembly, which exhibited favorable selectivity and high adsorption capacity for isolating hemoglobin.


2010 ◽  
Vol 114 (51) ◽  
pp. 22462-22465 ◽  
Author(s):  
Xu Jiang ◽  
Yanwen Ma ◽  
Juanjuan Li ◽  
Quli Fan ◽  
Wei Huang

RSC Advances ◽  
2016 ◽  
Vol 6 (82) ◽  
pp. 78538-78547 ◽  
Author(s):  
Haiming Cheng ◽  
Huafei Xue ◽  
Guangdong Zhao ◽  
Changqing Hong ◽  
Xinghong Zhang

In this work, hierarchical porous graphene-based composite aerogels are synthesized by a simple and facile one-pot polymerization-induced phase separation.


Author(s):  
Qiuli Wei ◽  
Anaerguli Wufuer ◽  
Meisong Wang ◽  
Yuanyuan Wang ◽  
Liyi Dai

Three-dimensional graphene (3DG) sponge has attracted increasing attention because it combines the unique properties of cellular materials and the excellent performance of graphene. The preparation of 3DG sponge depends mainly on the self-assembly of graphene oxide sheets. Here, we demonstrate facile fabrication of 3DG sponge with a large-scale and ordered porous structure, exploiting the liquid crystals of large graphene oxide (LGO) and ultralarge graphene oxide (ULGO) sheets. The resulting materials exhibit a low density, high porosity and elasticity. Our work explores a new strategy for organizing the ordered alignment of controlled large GO sheets and exploring the relationship between the microstructures and mechanical properties of 3DG sponge.


Sign in / Sign up

Export Citation Format

Share Document