Xanthohumol Modulates Inflammation, Oxidative Stress, and Angiogenesis in Type 1 Diabetic Rat Skin Wound Healing

2013 ◽  
Vol 76 (11) ◽  
pp. 2047-2053 ◽  
Author(s):  
Raquel Costa ◽  
Rita Negrão ◽  
Inês Valente ◽  
Ângela Castela ◽  
Delfim Duarte ◽  
...  
1997 ◽  
Vol 137 (1) ◽  
pp. 67-77 ◽  
Author(s):  
Akiko Okada ◽  
Catherine Tomasetto ◽  
Yves Lutz ◽  
Jean-Pierre Bellocq ◽  
Marie-Christine Rio ◽  
...  

Skin wound healing depends on cell migration and extracellular matrix remodeling. Both processes, which are necessary for reepithelization and restoration of the underlying connective tissue, are believed to involve the action of extracellular proteinases. We screened cDNA libraries and we found that six matrix metalloproteinase genes were highly expressed during rat skin wound healing. They were namely those of stromelysin 1, stromelysin 3, collagenase 3, gelatinase A (GelA), gelatinase B, and membrane type-1 matrix metalloproteinase (MT1-MMP). The expression kinetics of these MMP genes, the tissue distribution of their transcripts, the results of cotransfection experiments in COS-1 cells, and zymographic analyses performed using microdissected rat wound tissues support the possibility that during cutaneous wound healing pro-GelA and pro-gelatinase B are activated by MT1-MMP and stromelysin 1, respectively. Since MT1-MMP has been demonstrated to be a membrane-associated protein (Sato, H., T. Takino, Y. Okada, J. Cao, A. Shinagawa, E. Yamamoto, and M. Seiki. 1994. Nature (Lond.). 370: 61–65), our finding that GelA and MT1-MMP transcripts were expressed in stromal cells exhibiting a similar tissue distribution suggests that MT1-MMP activates pro-GelA at the stromal cell surface. This possibility is further supported by our observation that the processing of proGelA to its mature form correlated to the detection of MT1-MMP in cell membranes of rat fibroblasts expressing the MT1-MMP and GelA genes. These observations, together with the detection of high levels of the mature GelA form in the granulation tissue but not in the regenerating epidermis, suggest that MT1-MMP and GelA contribute to the restoration of connective tissue during rat skin wound healing.


2020 ◽  
Vol 24 (8) ◽  
pp. 4415-4427
Author(s):  
Shengju Yang ◽  
Mengting Xu ◽  
Guoliang Meng ◽  
Yan Lu

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4875
Author(s):  
Mongi Saoudi ◽  
Riadh Badraoui ◽  
Ahlem Chira ◽  
Mohd Saeed ◽  
Nouha Bouali ◽  
...  

In our study, Allium subhirsutum L. (AS) was investigated to assess its phenolic profile and bioactive molecules including flavonoids and organosulfur compounds. The antioxidant potential of AS and wound healing activity were addressed using skin wound healing and oxidative stress and inflammation marker estimation in rat models. Phytochemical and antiradical activities of AS extract (ASE) and oil (ASO) were studied. The rats were randomly assigned to four groups: group I served as a control and was treated with simple ointment base, group II was treated with ASE ointment, group III was treated with ASO ointment and group IV (reference group; Ref) was treated with a reference drug “Cytolcentella® cream”. Phytochemical screening showed that total phenols (215 ± 3.5 mg GAE/g) and flavonoids (172.4 ± 3.1 mg QE/g) were higher in the ASO than the ASE group. The results of the antioxidant properties showed that ASO exhibited the highest DPPH free radical scavenging potential (IC50 = 0.136 ± 0.07 mg/mL), FRAP test (IC50 = 0.013 ± 0.006 mg/mL), ABTS test (IC50 = 0.52 ± 0.03 mg/mL) and total antioxidant capacity (IC50 = 0.34 ± 0.06 mg/mL). In the wound healing study, topical application of ASO performed the fastest wound-repairing process estimated by a chromatic study, percentage wound closure, fibrinogen level and oxidative damage status, as compared to ASE, the Cytolcentella reference drug and the untreated rats. The use of AS extract and oil were also associated with the attenuation of oxidative stress damage in the wound-healing treated rats. Overall, the results provided that AS, particularly ASO, has a potential medicinal value to act as effective skin wound healing agent.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Daiane Figueiredo Rosa ◽  
Mariáurea Matias Sarandy ◽  
Rômulo Dias Novaes ◽  
Mariella Bontempo Freitas ◽  
Maria do Carmo Gouveia Pelúzio ◽  
...  

The wound-healing process is complex and remains a challenging process under the influence of several factors, including eating habits. As improper diets may lead to disorders such as dyslipidemia, insulin resistance, and chronic inflammation, potentially affecting the tissue ability to heal, we decided to investigate the effect of a high-fat diet and alcohol intake on the inflammatory process and skin wound healing in Wistar rats. Male rats (n=30) were individually housed in cages with food and water ad libitum (registration number 213/2014). After anesthesia, at day 40, three circular wounds (12 mm diameter) were made on the back of each animal, which were then randomly assorted into five treatment groups: C1 (control 1)—water via gavage and standard chow diet; C2 (control 2)—water (no gavage) and standard chow diet; AL (alcohol)—water (no gavage) and alcohol (40%) via gavage and standard chow diet; HF (high fat)—water (no gavage) and high-fat diet (50%); and HF + AL (alcohol/high fat)—water (no gavage), alcohol (40%) via gavage, and high-fat diet. Animals were treated for 61 days. Every seven days, the area and the rate of wound contraction were evaluated. Tissue samples were removed for histopathological analysis and biochemical analyses. Our results showed that wound contraction was not complete in the HF + AL rats. Two specific indices of wound-healing impairment (total cell number and levels of the inflammatory cytokine TGF-β) were increased in the HF + AL rats. We also observed decreased type I and III collagen fibers in the HF, AL, and HF + AL groups and increased oxidative stress markers in the same groups. We suggest that a high-fat diet combined with alcohol intake contributed to delayed skin wound healing through increase of the inflammatory phase and promoting oxidative stress, which may have led to morphological alterations and impaired matrix remodeling.


Marine Drugs ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 48 ◽  
Author(s):  
Mei-Ling Sun ◽  
Fang Zhao ◽  
Xiu-Lan Chen ◽  
Xi-Ying Zhang ◽  
Yu-Zhong Zhang ◽  
...  

Many marine microorganisms synthesize exopolysaccharides (EPSs), and some of these EPSs have been reported to have potential in different fields. However, the pharmaceutical potentials of marine EPSs are rarely reported. The EPS secreted by the Artic marine bacterium Polaribacter sp. SM1127 has good antioxidant activity, outstanding moisture-retention ability, and considerable protective property on human dermal fibroblasts (HDFs) at low temperature. Here, the effects of SM1127 EPS on skin wound healing and frostbite injury prevention were studied. Scratch wound assay showed that SM1127 EPS could stimulate the migration of HDFs. In the full-thickness cutaneous wound experiment of Sprague–Dawley (SD) rats, SM1127 EPS increased the wound healing rate and stimulated tissue repair detected by macroscopic observation and histologic examination, showing the ability of SM1127 EPS to promote skin wound healing. In the skin frostbite experiment of SD rats, pretreatment of rat skin with SM1127 EPS increased the rate of frostbite wound healing and promoted the repair of the injured skin significantly, indicating the good effect of SM1127 EPS on frostbite injury prevention. These results suggest the promising potential of SM1127 EPS in the pharmaceutical area to promote skin wound healing and prevent frostbite injury.


2014 ◽  
Vol 221 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Ana Tiganescu ◽  
Melanie Hupe ◽  
Yoshikazu Uchida ◽  
Theodora Mauro ◽  
Peter M Elias ◽  
...  

Glucocorticoid (GC) excess inhibits wound healing causing increased patient discomfort and infection risk. 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activates GCs (converting 11-dehydrocorticosterone to corticosterone in rodents) in many tissues including skin, wherede novosteroidogenesis from cholesterol has also been reported. To examine the regulation of 11β-HSD1 and steroidogenic enzyme expression during wound healing, 5 mm wounds were generated in female SKH1 mice and compared at days 0, 2, 4, 8, 14, and 21 relative to unwounded skin. 11β-HSD1 expression (mRNA and protein) and enzyme activity were elevated at 2 and 4 days post-wounding, with 11β-HSD1 localizing to infiltrating inflammatory cells. 11β-HSD2 (GC-deactivating) mRNA expression and activity were undetectable. Although several steroidogenic enzymes displayed variable expression during healing, expression of the final enzyme required for the conversion of 11-deoxycorticosterone to corticosterone, 11β-hydroxylase (CYP11B1), was lacking in unwounded skin and post-wounding. Consequently, 11-deoxycorticosterone was the principal progesterone metabolite in mouse skin before and after wounding. Our findings demonstrate that 11β-HSD1 activates considerably more corticosterone than is generatedde novofrom progesterone in mouse skin and drives GC exposure during healing, demonstrating the basis for 11β-HSD1 inhibitors to accelerate wound repair.


Sign in / Sign up

Export Citation Format

Share Document