scholarly journals Post-translational modification mimicry for programmable assembly of elastin-based protein polymers

Author(s):  
Md Shahadat Hossain ◽  
Christopher Lynch ◽  
Davoud Mozhdehi
2020 ◽  
Vol 9 (3) ◽  
pp. 371-376 ◽  
Author(s):  
Dieter M. Scheibel ◽  
Md. Shahadat Hossain ◽  
Amy L. Smith ◽  
Christopher J. Lynch ◽  
Davoud Mozhdehi

2018 ◽  
Vol 2 (3) ◽  
pp. 433-442 ◽  
Author(s):  
Qiong Wang ◽  
Michael J. Betenbaugh

As a complex and common post-translational modification, N-linked glycosylation affects a recombinant glycoprotein's biological activity and efficacy. For example, the α1,6-fucosylation significantly affects antibody-dependent cellular cytotoxicity and α2,6-sialylation is critical for antibody anti-inflammatory activity. Terminal sialylation is important for a glycoprotein's circulatory half-life. Chinese hamster ovary (CHO) cells are currently the predominant recombinant protein production platform, and, in this review, the characteristics of CHO glycosylation are summarized. Moreover, recent and current metabolic engineering strategies for tailoring glycoprotein fucosylation and sialylation in CHO cells, intensely investigated in the past decades, are described. One approach for reducing α1,6-fucosylation is through inhibiting fucosyltransferase (FUT8) expression by knockdown and knockout methods. Another approach to modulate fucosylation is through inhibition of multiple genes in the fucosylation biosynthesis pathway or through chemical inhibitors. To modulate antibody sialylation of the fragment crystallizable region, expressions of sialyltransferase and galactotransferase individually or together with amino acid mutations can affect antibody glycoforms and further influence antibody effector functions. The inhibition of sialidase expression and chemical supplementations are also effective and complementary approaches to improve the sialylation levels on recombinant glycoproteins. The engineering of CHO cells or protein sequence to control glycoforms to produce more homogenous glycans is an emerging topic. For modulating the glycosylation metabolic pathways, the interplay of multiple glyco-gene knockouts and knockins and the combination of multiple approaches, including genetic manipulation, protein engineering and chemical supplementation, are detailed in order to achieve specific glycan profiles on recombinant glycoproteins for superior biological function and effectiveness.


2020 ◽  
Vol 64 (1) ◽  
pp. 97-110
Author(s):  
Christian Sibbersen ◽  
Mogens Johannsen

Abstract In living systems, nucleophilic amino acid residues are prone to non-enzymatic post-translational modification by electrophiles. α-Dicarbonyl compounds are a special type of electrophiles that can react irreversibly with lysine, arginine, and cysteine residues via complex mechanisms to form post-translational modifications known as advanced glycation end-products (AGEs). Glyoxal, methylglyoxal, and 3-deoxyglucosone are the major endogenous dicarbonyls, with methylglyoxal being the most well-studied. There are several routes that lead to the formation of dicarbonyl compounds, most originating from glucose and glucose metabolism, such as the non-enzymatic decomposition of glycolytic intermediates and fructosyl amines. Although dicarbonyls are removed continuously mainly via the glyoxalase system, several conditions lead to an increase in dicarbonyl concentration and thereby AGE formation. AGEs have been implicated in diabetes and aging-related diseases, and for this reason the elucidation of their structure as well as protein targets is of great interest. Though the dicarbonyls and reactive protein side chains are of relatively simple nature, the structures of the adducts as well as their mechanism of formation are not that trivial. Furthermore, detection of sites of modification can be demanding and current best practices rely on either direct mass spectrometry or various methods of enrichment based on antibodies or click chemistry followed by mass spectrometry. Future research into the structure of these adducts and protein targets of dicarbonyl compounds may improve the understanding of how the mechanisms of diabetes and aging-related physiological damage occur.


2020 ◽  
Vol 64 (2) ◽  
pp. 383-396
Author(s):  
Lara K. Krüger ◽  
Phong T. Tran

Abstract The mitotic spindle robustly scales with cell size in a plethora of different organisms. During development and throughout evolution, the spindle adjusts to cell size in metazoans and yeast in order to ensure faithful chromosome separation. Spindle adjustment to cell size occurs by the scaling of spindle length, spindle shape and the velocity of spindle assembly and elongation. Different mechanisms, depending on spindle structure and organism, account for these scaling relationships. The limited availability of critical spindle components, protein gradients, sequestration of spindle components, or post-translational modification and differential expression levels have been implicated in the regulation of spindle length and the spindle assembly/elongation velocity in a cell size-dependent manner. In this review, we will discuss the phenomenon and mechanisms of spindle length, spindle shape and spindle elongation velocity scaling with cell size.


1989 ◽  
Vol 62 (03) ◽  
pp. 902-905 ◽  
Author(s):  
Brian S Greffe ◽  
Marilyn J Manco-Johnson ◽  
Richard A Marlar

SummaryProtein C (PC) is a vitamin K-dependent protein which functions as both an anticoagulant and profibrinolytic. It is synthesized as a single chain protein (SC-PC) and post-transla-tionally modified into a two chain form (2C-PC). Two chain PC consists of a light chain (LC) and a heavy chain (HC). The present study was undertaken to determine the composition of the molecular forms of PC in plasma. PC was immunoprecipitated, subjected to SDS-PAGE and Western blotting. The blots were scanned by densitometry to determine the distribution of the various forms. The percentage of SC-PC and 2C-PC was found to be 10% and 90% respectively. This is in agreement with previous work. SC-PC and the heavy chain of 2C-PC consisted of three molecular forms (“alpha”, “beta”, and “gamma”). The “alpha” form of HC is the standard 2C form with a MW of 40 Kd. The “beta” form of HC has also been described and has MW which is 4 Kd less than the “alpha” form. The “gamma” species of the SC and 2C-PC has not been previously described. However, its 3 Kd difference from the “beta” form could be due to modification of the “beta” species or to a separate modification of the alpha-HC. The LC of PC was shown to exist in two forms (termed form 1 and form 2). The difference between these two forms is unknown. The molecular forms of PC are most likely due to a post-translational modification (either loss of a carbohydrate or a peptide) rather than from plasma derived degradation.


Sign in / Sign up

Export Citation Format

Share Document