Distinct Effects of Protein Kinase C on the Barrier Function at Different Developmental Stages

2003 ◽  
Vol 23 (2-3) ◽  
pp. 87-102 ◽  
Author(s):  
Anita Sjö ◽  
Karl-Eric Magnusson ◽  
Kajsa Holmgren Peterson

We show here, that activation of protein kinase C by the phorbol ester PMA improves barrier function in colon carcinoma (HT 29) cells. By contrast, in canine kidney (MDCK I) cells it caused increased permeability and opening of tight junctions; the latter has also been noticed in other studies. Thus, with PMA confluent HT 29 cells responded with a reduced passage of 330 kDa sodium fluorescein, increased transepithelial electrical resistance, and a change in the cell shape of the HT 29 cells from an irregular to a regular, hexagonal form. Confocal imaging revealed parallel distinct changes in the staining of occludin and caludin-1, viz. a translocation from cytoplasmic clusters to apical cell–cell contacts. Interestingly, in both cell lines protein kinase A activation caused a decreased in the threonine phosphorylation of occludin that correlated with tight junction assembly in HT 29 cells and tight junction disassembly in MDCK I cells. We conclude that protein kinase C regulation of the epithelial barrier involves specific molecular mechanisms and achieves distinct effects at different developmental stages.

1990 ◽  
Vol 10 (3) ◽  
pp. 293-299 ◽  
Author(s):  
Ewa Rydell ◽  
Karl-Eric Magnusson ◽  
Anita Sjö ◽  
Krister Axelsson

Protein kinase C (PK-C) and casein kinase II (CK-II) activities were studied in two human colon carcinoma cell lines (HT-29 and CaCO-2) undergoing differentiation in vitro resulting, in small-intestine-like cells. CaCo-2 cells, when grown under standard conditions, appear to undergo spontaneous differentiation. In these cells PK-C and CK-II activities were determined on day 5, 10 and 15. No significant differences in activities were seen either in PK-C or CK-II activity. HT-29 cells, when grown in glucose-free medium can be stimulated to undergo differentiation which is completed within 20 days. PK-C and CK-II activities were determined after 5, 10, 15, 20 and 25 days, respectively. PK-C activity rose from 7.9±3.5 pmole32P/mg protein/min at day 5 to 37.5±14.8 pmole32P/mg protein/min at day 20. After 25 days the activity was reduced to 20.0±7.8 pmole32P/mg protein/min. CK-II activity did not change significantly during day 5 to 20, but on day 25 there was a significant decrease in CK-II activity from 94.9±6.4 pmole32P/mg protein/min (day 20) to 62.6±3.9 pmole32P/mg protein/min (day 25) p=0.003. The results in this study indicate a role for PK-C and CK-II in cell growth and differentiation.


Endocrinology ◽  
2006 ◽  
Vol 147 (2) ◽  
pp. 977-989 ◽  
Author(s):  
Ling Zhu ◽  
Xin Li ◽  
Robin Zeng ◽  
George I. Gorodeski

Treatment of human cervical epithelial CaSki cells with ATP or with the diacylglyceride sn-1,2-dioctanoyl diglyceride (diC8) induced a staurosporine-sensitive transient increase, followed by a late decrease, in tight-junctional resistance (RTJ). CaSki cells express two immunoreactive forms of occludin, 65 and 50 kDa. Treatments with ATP and diC8 decreased the density of the 65-kDa form and increased the density of the 50-kDa form. ATP also decreased threonine phosphorylation of the 65-kDa form and increased threonine phosphorylation of the 50-kDa form and tyrosine phosphorylation of the 65- and 50-kDa forms. Staurosporine decreased acutely threonine and tyrosine phosphorylation of the two isoforms and in cells pretreated with staurosporine ATP increased acutely the density of the 65-kDa form and threonine phosphorylation of the 65-kDa form. Treatment with N-acetyl-leucinyl-leucinyl-norleucinal increased the densities of the 65- and 50-kDa forms. Pretreatment with N-acetyl-leucinyl-leucinyl-norleucinal attenuated the late decreases in RTJ induced by ATP and diC8 and the decrease in the 65-kDa and increase in the 50-kDa forms induced by ATP. Correlation analyses showed that high levels of RTJ correlated with the 65-kDa form, whereas low levels of RTJ correlated negatively with the 65-kDa form and positively with the 50-kDa form. The results suggest that in CaSki cells 1) occludin determines gating of the tight junctions, 2) changes in occludin phosphorylation status and composition regulate the RTJ, 3) protein kinase-C-mediated, threonine dephosphorylation of the 65-kDa occludin form increases the resistance of assembled tight junctions, 4) the early stage of tight junction disassembly involves calpain-mediated breakdown of occludin 65-kDa form to the 50-kDa form, and 5) increased levels of the 50-kDa form interfere with occludin gating of the tight junctions.


2003 ◽  
Vol 28 (5) ◽  
pp. 626-636 ◽  
Author(s):  
Elizabeth O. Harrington ◽  
Jodi L. Brunelle ◽  
Christopher J. Shannon ◽  
Eric S. Kim ◽  
Kirstin Mennella ◽  
...  

1999 ◽  
Vol 338 (2) ◽  
pp. 471-478 ◽  
Author(s):  
Marianne J. RATCLIFFE ◽  
Caroline SMALES ◽  
James M. STADDON

Inflammatory mediators such as histamine and thrombin increase the tight-junction permeability of endothelial cells. Tight-junction permeability may be independently controlled, but is dependent on the adherens junction, where adhesion is achieved through homotypic interaction of cadherins, which in turn are associated with cytoplasmic proteins, the catenins. p120, also termed p120cas/p120ctn, and its splice variant, p100, are catenins. p120, originally discovered as a substrate of the tyrosine kinase Src, is also a target for a protein kinase C-stimulated pathway in epithelial cells, causing its serine/threonine dephosphorylation. The present study shows that pharmacological activation of protein kinase C stimulated a similar pathway in endothelial cells. Activation of receptors for agents such as histamine (H1), thrombin and lysophosphatidic acid in the endothelial cells also caused serine/threonine dephosphorylation of p120 and p100, suggesting physiological relevance. However, protein kinase C inhibitors, although blocking the effect of pharmacological activation of protein kinase C, did not block the effects due to receptor activation. Calcium mobilization and the myosin-light-chain-kinase pathway do not participate in p120/p100 signalling. In conclusion, endothelial cells possess protein kinase C-dependent and -independent pathways regulating p120/p100 serine/threonine phosphorylation. These data describe a new connection between inflammatory agents, receptor-stimulated signalling and pathways potentially influencing intercellular adhesion in endothelial cells.


2001 ◽  
Vol 360 (2) ◽  
pp. 295 ◽  
Author(s):  
Antonia AVILA-FLORES ◽  
Erika RENDÓN-HUERTA ◽  
Jacqueline MORENO ◽  
Socorro ISLAS ◽  
Abigail BETANZOS ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document