scholarly journals Approaches to the Monopole-Dynamic Dipole Vacuum Solution Concerning the Structure of Its Ernst Potential on the Symmetry Axis

1998 ◽  
Vol 30 (7) ◽  
pp. 999-1023 ◽  
Author(s):  
J. L. Hernández-Pastora ◽  
J. Martín ◽  
E. Ruiz
Climate ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 39
Author(s):  
Oleg Onishchenko ◽  
Viktor Fedun ◽  
Wendell Horton ◽  
Oleg Pokhotelov ◽  
Natalia Astafieva ◽  
...  

A new model of an axially-symmetric stationary concentrated vortex for an inviscid incompressible flow is presented as an exact solution of the Euler equations. In this new model, the vortex is exponentially localised, not only in the radial direction, but also in height. This new model of stationary concentrated vortex arises when the radial flow, which concentrates vorticity in a narrow column around the axis of symmetry, is balanced by vortex advection along the symmetry axis. Unlike previous models, vortex velocity, vorticity and pressure are characterised not only by a characteristic vortex radius, but also by a characteristic vortex height. The vortex structure in the radial direction has two distinct regions defined by the internal and external parts: in the inner part the vortex flow is directed upward, and in the outer part it is downward. The vortex structure in the vertical direction can be divided into the bottom and top regions. At the bottom of the vortex the flow is centripetal and at the top it is centrifugal. Furthermore, at the top of the vortex the previously ascending fluid starts to descend. It is shown that this new model of a vortex is in good agreement with the results of field observations of dust vortices in the Earth’s atmosphere.


2000 ◽  
Vol 09 (06) ◽  
pp. 669-686 ◽  
Author(s):  
MARÍA E. ANGULO ◽  
GUILLERMO A. MENA MARUGÁN

Linearly polarized cylindrical waves in four-dimensional vacuum gravity are mathematically equivalent to rotationally symmetric gravity coupled to a Maxwell (or Klein–Gordon) field in three dimensions. The quantization of this latter system was performed by Ashtekar and Pierri in a recent work. Employing that quantization, we obtain here a complete quantum theory which describes the four-dimensional geometry of the Einstein–Rosen waves. In particular, we construct regularized operators to represent the metric. It is shown that the results achieved by Ashtekar about the existence of important quantum gravity effects in the Einstein–Maxwell system at large distances from the symmetry axis continue to be valid from a four-dimensional point of view. The only significant difference is that, in order to admit an approximate classical description in the asymptotic region, states that are coherent in the Maxwell field need not contain a large number of photons anymore. We also analyze the metric fluctuations on the symmetry axis and argue that they are generally relevant for all of the coherent states.


2010 ◽  
Vol 29-32 ◽  
pp. 1313-1316
Author(s):  
Yu Ji Chen

In order to study the buckling mechanics behaviour of the out-of-plane stability of arches with the double symmetry axis section, by mean of potential variational theories, considering the out-of-plane deformation of arches, the out-of-plane stability governing equation of arches was obtained. The problem was solved by the spline function allocating point method. An example was calculated with this paper method. It is shown by comparing the result of this paper with the others that the paper method is reliable and accurate.


Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 2082-2091 ◽  
Author(s):  
Bjørn Ursin ◽  
Ketil Hokstad

Compensation for geometrical spreading is important in prestack Kirchhoff migration and in amplitude versus offset/amplitude versus angle (AVO/AVA) analysis of seismic data. We present equations for the relative geometrical spreading of reflected and transmitted P‐ and S‐wave in horizontally layered transversely isotropic media with vertical symmetry axis (VTI). We show that relatively simple expressions are obtained when the geometrical spreading is expressed in terms of group velocities. In weakly anisotropic media, we obtain simple expressions also in terms of phase velocities. Also, we derive analytical equations for geometrical spreading based on the nonhyperbolic traveltime formula of Tsvankin and Thomsen, such that the geometrical spreading can be expressed in terms of the parameters used in time processing of seismic data. Comparison with numerical ray tracing demonstrates that the weak anisotropy approximation to geometrical spreading is accurate for P‐waves. It is less accurate for SV‐waves, but has qualitatively the correct form. For P waves, the nonhyperbolic equation for geometrical spreading compares favorably with ray‐tracing results for offset‐depth ratios less than five. For SV‐waves, the analytical approximation is accurate only at small offsets, and breaks down at offset‐depth ratios less than unity. The numerical results are in agreement with the range of validity for the nonhyperbolic traveltime equations.


2012 ◽  
Vol 190 (2) ◽  
pp. 1197-1203 ◽  
Author(s):  
Dariush Nadri ◽  
Joël Sarout ◽  
Andrej Bóna ◽  
David Dewhurst

2000 ◽  
Vol 643 ◽  
Author(s):  
Gerald Kasner ◽  
Zorka Paradopolos

AbstractThe icosahedral canonical tiling of the three-dimensional space by six golden tetahedra T*(2F) [1] is decorated for physical applications by the Bergman polytopes [2]. The model can be also formulated as the “primitive) tiling TP [3] decorated by alternating Bergman symmetry axis of and icosahedron, there appear the plans on three mutual distances following the rule of a decorated Fibonacci sequence. All these three distances among the terraces (mutually scaled by a factor τ) have been recently observed by shen et al. [5]. In particular they have measured also the shortest distance of 2.52Å that breaks the Fibonnaci-sequence of terrace like surfaces measured previously by schaub et al. [6]. We predict the frequencies for the appearance of the terraces of different heights in the model under the condition that the model of Boudard et al. [7.8], we decorate the atomic positions by Al, Pd and Mn. We present images of the predicted possible terrace-like surfaces on three possible distances in the fully decorated model by the atomic species.


Sign in / Sign up

Export Citation Format

Share Document