scholarly journals The Stationary Concentrated Vortex Model

Climate ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 39
Author(s):  
Oleg Onishchenko ◽  
Viktor Fedun ◽  
Wendell Horton ◽  
Oleg Pokhotelov ◽  
Natalia Astafieva ◽  
...  

A new model of an axially-symmetric stationary concentrated vortex for an inviscid incompressible flow is presented as an exact solution of the Euler equations. In this new model, the vortex is exponentially localised, not only in the radial direction, but also in height. This new model of stationary concentrated vortex arises when the radial flow, which concentrates vorticity in a narrow column around the axis of symmetry, is balanced by vortex advection along the symmetry axis. Unlike previous models, vortex velocity, vorticity and pressure are characterised not only by a characteristic vortex radius, but also by a characteristic vortex height. The vortex structure in the radial direction has two distinct regions defined by the internal and external parts: in the inner part the vortex flow is directed upward, and in the outer part it is downward. The vortex structure in the vertical direction can be divided into the bottom and top regions. At the bottom of the vortex the flow is centripetal and at the top it is centrifugal. Furthermore, at the top of the vortex the previously ascending fluid starts to descend. It is shown that this new model of a vortex is in good agreement with the results of field observations of dust vortices in the Earth’s atmosphere.

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
H. Vargas-Rodríguez ◽  
A. Gallegos ◽  
M. A. Muñiz-Torres ◽  
H. C. Rosu ◽  
P. J. Domínguez

In this work, we consider axially symmetric stationary electromagnetic fields in the framework of special relativity. These fields have an angular momentum density in the reference frame at rest with respect to the axis of symmetry; their Poynting vector form closed integral lines around the symmetry axis. In order to describe the state of motion of the electromagnetic field, two sets of observers are introduced: the inertial set, whose members are at rest with the symmetry axis; and the noninertial set, whose members are rotating around the symmetry axis. The rotating observers measure no Poynting vector, and they are considered as comoving with the electromagnetic field. Using explicit calculations in the covariant 3 + 1 splitting formalism, the velocity field of the rotating observers is determined and interpreted as that of the electromagnetic field. The considerations of the rotating observers split in two cases, for pure fields and impure fields, respectively. Moreover, in each case, each family of rotating observers splits in two subcases, due to regions where the electromagnetic field rotates with the speed of light. These regions are generalizations of the light cylinders found around magnetized neutron stars. In both cases, we give the explicit expressions for the corresponding velocity fields. Several examples of relevance in astrophysics and cosmology are presented, such as the rotating point magnetic dipoles and a superposition of a Coulomb electric field with the field of a point magnetic dipole.


1981 ◽  
Vol 103 (1) ◽  
pp. 19-27
Author(s):  
M. L. Billet

Cavitation inception of a vortex is difficult to predict. This is due in a large part to a confusion in the type of cavitation occurring, i.e., vaporous versus nonvaporous cavitation. In addition, the vortex structure is poorly defined in many cases. These two problems are particularly important for the prediction of cavitation inception in a vortex created in the low momentum fluid near the inner wall of a rotor. The purpose of this paper is to present the results of a vortex cavitation investigation which are both experimental and theoretical. A vorticity flow analysis is developed and employed to assess the effect of vorticity on cavitation inception of a vortex. Previous investigations have shown that the minimum pressure coefficient of a vortex depends upon the vorticity associated with the vortex. Employing secondary vorticity equations, the vorticity is calculated in the blade passage. Changes in passage vorticity are used in a simple vortex model to predict trends in cavitation inception of a vortex. Theoretical results indicate that small changes in vorticity distribution near the inner wall of the rotor create rather large differences in the cavitation inception of the vortex. These small changes are primarily due to changes in the secondary vorticity. This secondary vorticity dominates the vortex structure. Comparisons are presented between the predicted and measured cavitation inception and good agreement is shown when the effects of gas on cavitation inception are reduced. Experimental data confirms that secondary vorticity dominates the vortex structure. In addition, experimental cavitation data are presented which show the dramatic influence of a gas on cavitation inception of a vortex.


1967 ◽  
Vol 29 (3) ◽  
pp. 485-494 ◽  
Author(s):  
M. I. G. Bloor

Using the grey gas approximation, the effect of radiative heat loss on axially symmetric flows is studied. Using an expansion procedure about the axis of symmetry, a numerical solution for the stagnation region is found taking the shock to be spherical. The results of this calculation are compared with the results of Lighthill's non-radiative constant density solution.


2010 ◽  
Vol 14 (1) ◽  
pp. 91-98 ◽  
Author(s):  
D. Jougnot ◽  
A. Revil

Abstract. The parameters used to describe the electrical conductivity of a porous material can be used to describe also its thermal conductivity. A new relationship is developed to connect the thermal conductivity of an unsaturated porous material to the thermal conductivity of the different phases of the composite, and two electrical parameters called the first and second Archie's exponents. A good agreement is obtained between the new model and thermal conductivity measurements performed using packs of glass beads and core samples of the Callovo-Oxfordian clay-rocks at different saturations of the water phase. We showed that the three model parameters optimised to fit the new model against experimental data (namely the thermal conductivity of the solid phase and the two Archie's exponents) are consistent with independent estimates. We also observed that the anisotropy of the effective thermal conductivity of the Callovo-Oxfordian clay-rock was mainly due to the anisotropy of the thermal conductivity of the solid phase.


2018 ◽  
Vol 82 (2) ◽  
pp. 21001
Author(s):  
Grzegorz Tytko ◽  
Leszek Dziczkowski

The paper examines the problem of an axially symmetric I-cored coil located above a three-layered plate with a hole in the middle layer. A cylindrical coordinate system was applied, wherein the solution domain was truncated in the radial direction. The employment of the truncated region eigenfunction expansion (TREE) method resulted in deriving the final formulas for the change of the coil impedance with regard to the air space, and also pertaining to the test object without a flaw. Formulas for various configurations of the test object, among others for a surface hole, a subsurface hole and a through hole, have been presented. For the purpose of defectoscopy, the influence of the hole in the plate on the impedance components was investigated. The calculations were made in Matlab for frequencies from 100 Hz to 50 kHz. The obtained results were verified using the finite element method (FEM) in Comsol Multiphysics package. A very good agreement was observed in the case of both the resistance and reactance.


1972 ◽  
Vol 94 (1) ◽  
pp. 187-192 ◽  
Author(s):  
D. L. Schrage ◽  
H. C. Perkins

An analytical and experimental study of isothermal bubble motion through a liguid which is itself in motion is presented. Both analytical and experimental results are reported for the velocities and trajectories of oxygen bubbles moving through a liquid annulus which is rotating at angular velocities ranging from 500 to 1500 rpm. Results are presented for both distilled water and glycerin. The analytical prediction of the trajectories and velocities showed good agreement with the experimental data. It was found that the bubbles, which were injected at the exterior of the liquid annulus, spiralled inward rapidly and, due to the large pressure gradient in the radial direction, did not reach a constant or terminal velocity.


2018 ◽  
Vol 241 ◽  
pp. 01019 ◽  
Author(s):  
Abdoulhafar Halassi ◽  
Youssef Joundy ◽  
Loubna Salhi ◽  
Ahmed Taik

This paper investigates the interaction between natural convection and heat explosion in porous media. A meshless collocation method based on multiquadric radial basis functions has been applied to study the problem in an inclined two-dimensional porous media. The governing equations consist of coupling the Darcy equations in the Boussinesq approximation of low density variations to the heat equation with a nonlinear chemical source term. The numerical results obtained are in good agreement with some previous studies that consider the vertical direction. A complex behaviour of solutions is observed, including periodic and aperiodic oscillations. We have shown that a small inclination of the container stabilizes the reactive fluid and can prevent thermal explosion.


2021 ◽  
Vol 11 (21) ◽  
pp. 10381
Author(s):  
Yuriy Sirenko ◽  
Seil Sautbekov ◽  
Merey Sautbekova ◽  
Nataliya Yashina ◽  
Nursaule Burambayeva ◽  
...  

The paper is focused on reliable modeling and analysis of axially symmetric radiators with a very narrow (throat) funnel-shaped radiation pattern. When such a diagram is formed, a wave analogue of Smith–Purcell coherent radiation is realized—the surface wave of a radial dielectric waveguide ‘sweeps out’ with its exponentially decaying part a concentric periodic grating, the fundamental spatial harmonic of which, propagating without attenuation in a direction close to the symmetry axis of the structure, generates a radiation field with the required characteristics.


2015 ◽  
Vol 51 (1) ◽  
pp. 33-40 ◽  
Author(s):  
X.B. Huang ◽  
X X.W. ◽  
J.J. Song ◽  
C.G. Bai ◽  
R.D. Zhang ◽  
...  

The relative contact angle (?RCA) for seven iron ore fines was measured by using Washburn Osmotic Pressure method under laboratory conditions. By choosing cyclohexane as the reference that can perfectly wet iron ore particles, the relative contact angles were measured and varied from 57? to 73?. With the volume % of goethite (?G) as the variable, a new model for relative contact angle was developed. The expected relative contact angle for pure goethite is about 56?, while that for goethite free samples is about 77?. Physical properties, such as surface morphology (SMI) and pore volume (Vpore) can influence the relative contact angle. The ?G can be expressed as a function of SMI and VPore. Thus, we inferred that the relative contact angle is a function of ?G for the iron ores used. The measured relative contact angles were found to be in good agreement (Radj 2 >0.97) with the calculated ones based on the research from Iveson, et al. (2004). Comparing with the model developed by Iveson et al.(2004), the new model for contact angle proposed in this paper is similar, but more detailed with two meaningful physical parameters. The modification of physicochemical properties on iron ores would be another topic in the further study on granulation.


2019 ◽  
Vol 629 ◽  
pp. A52 ◽  
Author(s):  
Ewa L. Łokas

Using N-body simulations we study the buckling instability in a galactic bar forming in a Milky Way-like galaxy. The galaxy is initially composed of an axisymmetric, exponential stellar disk embedded in a spherical dark matter halo. The parameters of the model are chosen so that the galaxy is mildly unstable to bar formation and the evolution is followed for 10 Gyr. A strong bar forms slowly over the first few gigayears and buckles after 4.5 Gyr from the start of the simulation becoming much weaker and developing a pronounced boxy/peanut shape. We measure the properties of the bar at the time of buckling in terms of the mean acceleration, velocity, and distortion in the vertical direction. The maps of these quantities in face-on projections reveal characteristic quadrupole patterns which wind up over a short timescale. We also detect a secondary buckling event lasting much longer and occurring only in the outer part of the bar. We then study the orbital structure of the bar in periods before and after the first buckling. We find that most of the buckling orbits originate from x1 orbits supporting the bar. During buckling the ratio of the vertical to horizontal frequency of the stellar orbits decreases dramatically and after buckling the orbits obey a very tight relation between the vertical and circular frequency: 3ν = 4Ω. We propose that buckling is initiated by the vertical resonance of the x1 orbits creating the initial distortion of the bar that later evolves as kinematic bending waves.


Sign in / Sign up

Export Citation Format

Share Document