Mechanical Properties of 08Kh18N10T Steel after Prolonged Use in Low-Temperature High-Pressure Hydrogen Gas

2004 ◽  
Vol 40 (1/2) ◽  
pp. 118-120
Author(s):  
G. A. Stepanov
Author(s):  
Akihide Nagao ◽  
Nobuyuki Ishikawa ◽  
Toshio Takano

Cr-Mo and Ni-Cr-Mo high-strength low-alloy steels are candidate materials for the storage of high-pressure hydrogen gas. Forging materials of these steels have been used for such an environment, while there has been a strong demand for a higher performance material with high resistance to hydrogen embrittlement at lower cost. Thus, mechanical properties of Cr-Mo and Ni-Cr-Mo steels made of quenched and tempered seamless pipes in high-pressure hydrogen gas up to 105 MPa were examined in this study. The mechanical properties were deteriorated in the presence of hydrogen that appeared in reduction in local elongation, decrease in fracture toughness and accelerated fatigue-crack growth rate, although the presence of hydrogen did not affect yield and ultimate tensile strengths and made little difference to the fatigue endurance limit. It is proposed that pressure vessels for the storage of gaseous hydrogen made of these seamless line pipe steels can be designed.


Author(s):  
Toshio Ogata ◽  
Yoshinori Ono

Abstract In order to standardize the simple testing method to evaluate mechanical properties using hollow-type specimen in the high pressure hydrogen gas, influences of the hole and inner surface roughness on the relative reduction of area (RRA) and other properties in slow strain rate tensile (SSRT) tests were investigated on different surface finished specimens at 105 MPa hydrogen gas for SUS316L and JIS SNCM439 steels. There is no influence of the hole and the inner pressure for the yield strength and the tensile strength. The RRA slightly increased in less roughness specimens. So, the axially polished finish for the hollow specimen will be proposed to the standard testing procedures of the SSRT test with this method to evaluate mechanical properties in the high pressure hydrogen gas.


Author(s):  
Un Bong Baek ◽  
Hae Moon Lee ◽  
Seung Wook Baek ◽  
Seung Hoon Nahm

The tensile properties of API 5L X70 pipeline steels have been measured in a high-pressure (10 MPa) hydrogen gas environment. Significant decreases in elongation at failure and reduction of area were observed when testing in hydrogen as compared with air, and those changes were accompanied by noticeable changes in fracture morphology. The present paper exposes the changes in mechanical properties of a grade API 5L X70 steel through numerous mechanical tests, i.e. tensile tests, notch tensile tests, fracture toughness and fatigue crack growth measurements, performed either in atmosphere or in 10 MPa pressure of hydrogen gas.


2008 ◽  
Vol 2008 (0) ◽  
pp. _GS0406-1_-_GS0406-2_
Author(s):  
Masatoshi NAKAO ◽  
Hirotada FUJIWARA ◽  
Junichiro YAMABE ◽  
Shin NISHIMURA

Author(s):  
Toshio Ogata

A simple testing method to evaluate the influence of high pressure hydrogen gas up to 100 MPa on mechanical properties at the temperature between 20 K and up to 800 K had been developed. In this method, instead of using high-pressure gas vessels, high pressure gas was filled into a small hole in the hollow-type test piece from a hydrogen gas cylinder or a compressor for 10 MPa or 100 MPa test. A small inner diameter of the hole enables to evaluate also the reduction of area in the slow strain-rate tensile (SSRT) tests. The temperature of the test piece with the high pressure gas can be changed simply by surrounding coolant or heater between 20 K and 800 K. Lots of test results by this method proved that almost the same results were obtained between this method and the conventional method with high-pressure gas vessels where test piece is installed. The great advantages of this method are not only the less cost for the facilities of high-pressure vessels but also the ability of tests at lower or higher temperatures than those with the vessels. So, this method is proposed to be used world-widely to evaluate the mechanical properties of structural materials for extremely severe environments, such as high-pressure hydrogen applications and also to study the mechanism of the influence of high-pressure hydrogen for design and reliability of those facilities. In this paper, the details of testing procedure of this method and results of tensile and fatigue tests in up to 70 MPa hydrogen gas on several kinds of stainless steels obtained by this method are presented.


Author(s):  
Shusaku Takagi ◽  
Hiroshi Okano ◽  
Akihide Nagao

Evaluations of mechanical properties under high pressure hydrogen gas environments are difficult because special testing equipment which can obtain data under high pressure hydrogen gas is necessary and the cost of installing those machines is very high. Therefore, a method for predicting mechanical properties under high pressure hydrogen gas without special equipment was investigated in this study. A JIS SCM435 steel, of which the typical chemical composition is Fe-0.35%C-0.2%Si-0.75%Mn-1.1%Cr-0.2%Mo, was used. Material with the size of 22mm in square and 200mm in length was heat-treated by quenching in oil and tempering, followed by water cooling. The material microstructure was tempered martensite, and the tensile strength of the steel was about 1000MPa. The fatigue property was evaluated in cathodic hydrogen charging service and high pressure hydrogen gas service. The fatigue property obtained by the cathodic charging method was almost the same as the property under the high pressure hydrogen gas condition. The reason is conjectured to be that the hydrogen fugacity on the specimen surface and the surface state of the specimen under those test services was substantially the same.


Hyomen Kagaku ◽  
2015 ◽  
Vol 36 (11) ◽  
pp. 562-567
Author(s):  
Hisao MATSUNAGA ◽  
Junichiro YAMABE ◽  
Saburo MATSUOKA

Sign in / Sign up

Export Citation Format

Share Document