Changes in Carbohydrate and Polyphenolics Pools during Potato Tuber Maturation: Cultivar-Specific Development of Resistance to Pathogens

2004 ◽  
Vol 396 (1-6) ◽  
pp. 240-242
Author(s):  
A. A. Faruk ◽  
E. B. Kirichenko ◽  
T. V. Voronkova ◽  
O. V. Shelepova ◽  
L. S. Olekhnovich
2005 ◽  
Vol 130 (6) ◽  
pp. 936-942 ◽  
Author(s):  
Robert P. Sabba ◽  
Edward C. Lulai

Potato (Solanum tuberosum L.) periderm forms a barrier at the surface of the tuber that protects it from infection and dehydration. Immature periderm is susceptible to excoriation (skinning injury), which results in costly storage loses and market quality defects. The periderm consists of three different cell types: phellem (skin), phellogen (cork cambium), and phelloderm (parenchyma-like cells). The phellogen serves as a lateral meristem for the periderm and is characterized by thin radial walls that are labile to fracture while the periderm is immature and the phellogen is actively dividing, thus rendering the tuber susceptible to excoriation. As the periderm matures the phellogen becomes inactive, its cell walls thicken and become resistant to fracture, and thus the tuber becomes resistant to excoriation. Little is known about the changes in cell wall polymers that are associated with tuber periderm maturation and the concurrent development of resistance to excoriation. Various changes in pectins (galacturonans and rhamnogalacturonans) and extensin may be involved in this maturational process. The objectives of this research were to compare immunolabeling of homogalacturonan (HG) epitopes to labeling of rhamnogalacturonan I (RG-I) and extensin epitopes to better understand the depositional patterns of these polymers in periderm cell walls and their involvement in tuber periderm maturation. Immunolabeling with the monoclonal antibodies JIM5 and JIM7 (recognizing a broad range of esterified HG) confirmed that HG epitopes are lacking in phellogen walls of immature periderm, but increased greatly upon maturation of the periderm. Labeling of a (1,4)-β-galactan epitope found in RG-I and recognized by the monoclonal antibody LM5 was abundant in phelloderm cell walls, but sparse in most phellem cell walls. LM5 labeling was very sparse in the walls of meristematically active phellogen cells of immature periderm, but increased dramatically upon periderm maturation. Deposition of a (1,5)-α-l-arabinan epitope found in RG-I and recognized by LM6 was abundant in phelloderm and phellogen cell walls, but was sparse in phellem cell walls. LM6 labeling of phellogen walls did not change upon periderm maturation, indicating that different RG-1 epitopes are regulated independently during maturation of the periderm. Labeling with the monoclonal antibody LM1 for an extensin epitope implied that extensin is lacking in phellem cell walls, but is abundant in phelloderm cell walls. Phellogen cell walls did not label with LM1 in immature periderm, but were abundantly labeled with LM1 in mature periderm. These immunolabeling studies identify pectin and extensin depositions as likely biochemical processes involved in the thickening and related strengthening of phellogen walls upon inactivation of the phellogen layer as a lateral meristem and maturation of the periderm in potato tuber. These results provide unique and new insight into the identities of some of the biological processes that may be targeted in the development of new technologies to enhance resistance to tuber skinning injury for improved harvest, handling and storage properties.


1996 ◽  
Vol 97 (4) ◽  
pp. 708-718 ◽  
Author(s):  
Shu-xia Li ◽  
Allan M. Showalter
Keyword(s):  

2018 ◽  
Vol 4 (4) ◽  
pp. 513
Author(s):  
Rakhshan .

Mosquitoes are vectors of many pathogens which causes serious human diseases like Malaria, Filariasis, Japanese encephalitis, Dengue fever, Chikungunya, Yellow fever and Zika virus which constitute a major public health problem globally. Mosquito borne diseases cause high level of economic impact all over the world and result in millions of death every year. They infect around 700,000,000 people annually worldwide and 40,000,000 only in India. The continuous use of synthetic pesticides to control vector mosquitoes has caused physiological resistance, toxic effect on human health, environmental pollution and addition to these, its adverse effects can be observed on non-target organisms. Synthetic chemical pesticides have been proved to be effective, but overall in last 5 decades indiscriminate use of synthetic pesticides against vector borne disease control have originated several ecological issues due to their residual accumulation and development of resistance in target vectors and their chronic effects.


2020 ◽  
Vol 26 (2) ◽  
pp. 305-308
Author(s):  
Fabiana Martinescu-Bădălan

AbstractThis work is designed to challenge the maintenance of the highest standards of physical training required to perform armed tasks. It is desired to accumulate a development experience that will culminate with the set upof very well-trained leaders. The training of the military is based on physical training. It ensures the possibility and availability of the military to cope with combat missions, obligations in the military environment, ensures the maintenance and development of resistance to intense physical and mental effort, and develops self-confidence and teamwork. The physical training considers the fulfillment of some general objectives and of some specific objectives, absolutely necessary in the conditions of carrying out the combat actions.


Crop Science ◽  
1969 ◽  
Vol 9 (5) ◽  
pp. 624-627 ◽  
Author(s):  
O. J. Hunt ◽  
R. N. Peaden ◽  
L. R. Faulkner ◽  
G. D. Griffin ◽  
H. J. Jensen

2020 ◽  
Vol 21 (11) ◽  
pp. 1105-1129
Author(s):  
Rani Mansuri ◽  
Jagbir Singh ◽  
Anupama Diwan

Leishmaniasis is one of the six entities on the list of most important diseases of the World Health Organization/Tropical Disease Research (WHO/TDR). After Malaria, it is one of the most prevalent and lethal parasitic diseases. VL is the fatal form of this disease, especially if left untreated. The drugs that are currently available for the treatment of VL are expensive, toxic, or no longer effective, especially in endemic regions. Currently, no vaccine has been developed to immunize humans against VL. The major problems with the current drugs are the development of resistance and their adverse effects. Therefore, there is a strong urge to research and design drugs that have better efficacies and low toxicities as compared to current chemotherapeutic drugs. Leishmania has various enzymes involved in its metabolic pathways, which are unique to either the same genus or trypanosomatids, making them a very suitable, attractive and novel target sites for drug development. One of the significant pathways unique to trypanosomatids is the thiol metabolism pathway, which is involved in the maintenance of redox homeostasis as well as protection of the parasite in the macrophage from oxidative stress-induced damage. In this review the several pathways, their essential enzymes as well as the proposed changes in the parasites due to drug resistance have been discussed to help to understand the most suitable drug target. The thiol metabolism pathway is discussed in detail, providing evidence of this pathway being the most favorable choice for drug targeting in VL.


2019 ◽  
Vol 19 (3) ◽  
pp. 179-188 ◽  
Author(s):  
Arkene Levy ◽  
Khalid Alhazzani ◽  
Priya Dondapati ◽  
Ali Alaseem ◽  
Khadijah Cheema ◽  
...  

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase, which is an essential player in regulating cell migration, invasion, adhesion, proliferation, and survival. Its overexpression and activation have been identified in sixty-eight percent of epithelial ovarian cancer patients and this is significantly associated with higher tumor stage, metastasis, and shorter overall survival of these patients. Most recently, a new role has emerged for FAK in promoting resistance to taxane and platinum-based therapy in ovarian and other cancers. The development of resistance is a complex network of molecular processes that make the identification of a targetable biomarker in platinum and taxane-resistant ovarian cancer a major challenge. FAK overexpression upregulates ALDH and XIAP activity in platinum-resistant and increases CD44, YB1, and MDR-1 activity in taxaneresistant tumors. FAK is therefore now emerging as a prognostically significant candidate in this regard, with mounting evidence from recent successes in preclinical and clinical trials using small molecule FAK inhibitors. This review will summarize the significance and function of FAK in ovarian cancer, and its emerging role in chemotherapeutic resistance. We will discuss the current status of FAK inhibitors in ovarian cancers, their therapeutic competencies and limitations, and further propose that the combination of FAK inhibitors with platinum and taxane-based therapies could be an efficacious approach in chemotherapeutic resistant disease.


Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 400 ◽  
Author(s):  
Seiichiro Mitani ◽  
Hisato Kawakami

Trastuzumab, a monoclonal antibody to human epidermal growth factor receptor 2 (HER2), has improved survival in patients with HER2-positive advanced gastric or gastroesophageal junction cancer (AGC). The inevitable development of resistance to trastuzumab remains a problem, however, with several treatment strategies that have proven effective in breast cancer having failed to show clinical benefit in AGC. In this review, we summarize the mechanisms underlying resistance to HER2-targeted therapy and outline past and current challenges in the treatment of HER2-positive AGC refractory to trastuzumab. We further describe novel agents such as HER2 antibody–drug conjugates that are under development and have shown promising antitumor activity in early studies.


2009 ◽  
Vol 284 (15) ◽  
pp. 9764-9769 ◽  
Author(s):  
Karen G. Welinder ◽  
Malene Jørgensen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document