An Event-Related fMRI Study of Visual and Auditory Oddball Tasks

2001 ◽  
Vol 15 (4) ◽  
pp. 221-240 ◽  
Author(s):  
Kent A. Kiehl ◽  
Kristin R. Laurens ◽  
Timothy L. Duty ◽  
Bruce B. Forster ◽  
Peter F. Liddle

Abstract Whole brain event-related functional magnetic resonance imaging (fMRI) techniques were employed to elucidate the cerebral sites involved in processing rare target and novel visual stimuli during an oddball discrimination task. The analyses of the hemodynamic response to the visual target stimuli revealed a distributed network of neural sources in anterior and posterior cingulate, inferior and middle frontal gyrus, bilateral parietal lobules, anterior superior temporal gyrus, amygdala, and thalamus. The analyses of the hemodynamic response for the visual novel stimuli revealed an extensive network of neural activations in occipital lobes and posterior temporal lobes, bilateral parietal lobules, and lateral frontal cortex. The hemodynamic response associated with processing target and novel stimuli in the visual modality were also compared with data from an analogous study in the auditory modality ( Kiehl et al., 2001 ). Similar patterns of activation were observed for target and novel stimuli in both modalities, but there were some significant differences. The results support the hypothesis that target detection and novelty processing are associated with neural activation in widespread neural areas, suggesting that the brain seems to adopt a strategy of activating many potentially useful brain regions despite the low probability that these brain regions are necessary for task performance.

2020 ◽  
Author(s):  
Junhai Xu ◽  
Haibin Dong ◽  
Fei Guo ◽  
Zeyu Wang ◽  
Jianguo Wei ◽  
...  

AbstractBeing able to accurately perceive the emotion expressed by the facial or verbal expression from others is critical to successful social interaction. However, only few studies examined the multimodal interactions on speech emotion, and there is no consistence in studies on the speech emotion perception. It remains unclear, how the speech emotion of different valence is perceived on the multimodal stimuli by our human brain. In this paper, we conducted a functional magnetic resonance imaging (fMRI) study with an event-related design, using dynamic facial expressions and emotional speech stimuli to express different emotions, in order to explore the perception mechanism of speech emotion in audio-visual modality. The representational similarity analysis (RSA), whole-brain searchlight analysis, and conjunction analysis of emotion were used to interpret the representation of speech emotion in different aspects. Significantly, a weighted RSA approach was creatively proposed to evaluate the contribution of each candidate model to the best fitted model. The results of weighted RSA indicated that the fitted models were superior to all candidate models and the weights could be used to explain the representation of ROIs. The bilateral amygdala has been shown to be associated with the processing of both positive and negative emotions except neutral emotion. It is indicated that the left posterior insula and the left anterior superior temporal gyrus (STG) play important roles in the perception of multimodal speech emotion.


2020 ◽  
Vol 45 (9) ◽  
pp. 833-844
Author(s):  
Ashley Prichard ◽  
Raveena Chhibber ◽  
Jon King ◽  
Kate Athanassiades ◽  
Mark Spivak ◽  
...  

Abstract In working and practical contexts, dogs rely upon their ability to discriminate a target odor from distracting odors and other sensory stimuli. Using awake functional magnetic resonance imaging (fMRI) in 18 dogs, we examined the neural mechanisms underlying odor discrimination between 2 odors and a mixture of the odors. Neural activation was measured during the presentation of a target odor (A) associated with a food reward, a distractor odor (B) associated with nothing, and a mixture of the two odors (A+B). Changes in neural activation during the presentations of the odor stimuli in individual dogs were measured over time within three regions known to be involved with odor processing: the caudate nucleus, the amygdala, and the olfactory bulbs. Average activation within the amygdala showed that dogs maximally differentiated between odor stimuli based on the stimulus-reward associations by the first run, while activation to the mixture (A+B) was most similar to the no-reward (B) stimulus. To clarify the neural representation of odor mixtures in the dog brain, we used a random forest classifier to compare multilabel (elemental) versus multiclass (configural) models. The multiclass model performed much better than the multilabel (weighted-F1 0.44 vs. 0.14), suggesting the odor mixture was processed configurally. Analysis of the subset of high-performing dogs’ brain classification metrics revealed a network of olfactory information-carrying brain regions that included the amygdala, piriform cortex, and posterior cingulate. These results add further evidence for the configural processing of odor mixtures in dogs and suggest a novel way to identify high-performers based on brain classification metrics.


2021 ◽  
pp. 030573562110420
Author(s):  
Xin Zhou ◽  
Ying Wu ◽  
Yingcan Zheng ◽  
Zilun Xiao ◽  
Maoping Zheng

Previous studies on multisensory integration (MSI) of musical emotions have yielded inconsistent results. The distinct features of the music materials and different musical expertise levels of participants may account for that. This study aims to explore the neural mechanism for the audio-visual integration of musical emotions and infer the reasons for inconsistent results in previous studies by investigating the influence of the type of musical emotions and musical training experience on the mechanism. This fMRI study used a block-design experiment. Music excerpts were selected to express fear, happiness, and sadness, presented under audio only (AO) and audio-visual (AV) modality conditions. Participants were divided into two groups: one comprising musicians who had been musically trained for many years and the other non-musicians with no musical expertise. They assessed the type and intensity of musical emotion after listening to or watching excerpts. Brain regions related to MSI of emotional information and default mode network (DMN) are sensitive to sensory modality conditions and emotion-type changes. Participants in the non-musician group had more, and bilateral distribution of brain regions showed greater activation in the AV assessment stage. By contrast, the musician group had less and lateralized right-hemispheric distribution of brain regions.


2012 ◽  
Vol 25 (0) ◽  
pp. 17
Author(s):  
Magdalena Chechlacz ◽  
Anna Terry ◽  
Pia Rotshtein ◽  
Wai-Ling Bickerton ◽  
Glyn Humphreys

Extinction is diagnosed when patients respond to a single contralesional item but fail to detect this item when an ipsilesional item is present concurrently. It is considered to be a disorder of attention characterized by a striking bias for the ipsilesional stimulus at the expense of the contralesional stimulus. Extinction has been studied mainly in the visual modality but it occurs also in other sensory modalities (touch, audition) and hence can be considered a multisensory phenomenon. The functional and neuroanatomical relations between extinction in different modalities are poorly understood. It could be hypothesised that extinction deficits in different modalities emerge after damage to both common (attention specific) and distinct (modality specific) brain regions. Here, we used voxel-based morphometry to examine the neuronal substrates of visual versus tactile extinction in a large group of stroke patients (). We found that extinction deficits in the two modalities were significantly correlated (; ). Lesions to inferior parietal lobule and middle frontal gyrus were linked to visual extinction, while lesions involving the superior temporal gyrus were associated with tactile extinction. Damage within the middle temporal gyrus was linked to both types of deficits but interestingly these lesions extended into the middle occipital gyrus in patients with visual but not tactile extinction. White matter damage within the temporal lobe was associated with both types of deficits, including lesions within long association pathways involved in spatial attention. Our findings indicate both common and distinct neural mechanisms of visual and tactile extinction.


2021 ◽  
Vol 11 (8) ◽  
pp. 983
Author(s):  
Xin Wang ◽  
Shiwen Feng ◽  
Tongquan Zhou ◽  
Renyu Wang ◽  
Guowei Wu ◽  
...  

According to the Unaccusative Hypothesis, intransitive verbs are divided into unaccusative and unergative ones based on the distinction of their syntactic properties, which has been proved by previous theoretical and empirical evidence. However, debate has been raised regarding whether intransitive verbs in Mandarin Chinese can be split into unaccusative and unergative ones syntactically. To analyze this theoretical controversy, the present study employed functional magnetic resonance imaging to compare the neural processing of deep unaccusative, unergative sentences, and passive sentences (derived structures undergoing a syntactic movement) in Mandarin Chinese. The results revealed no significant difference in the neural processing of deep unaccusative and unergative sentences, and the comparisons between passive sentences and the other sentence types revealed activation in the left superior temporal gyrus (LSTG) and the left middle frontal gyrus (LMFG). These findings indicate that the syntactic processing of unaccusative and unergative verbs in Mandarin Chinese is highly similar but different from that of passive verbs, which suggests that deep unaccusative and unergative sentences in Mandarin Chinese are both base-generated structures and that there is no syntactic distinction between unaccusative and unergative verbs in Mandarin Chinese.


1998 ◽  
Vol 173 (1) ◽  
pp. 69-74 ◽  
Author(s):  
John D. C. Mellers ◽  
Naoto Adachi ◽  
Noriyoshi Takei ◽  
Alice Cluckie ◽  
Brian K. Toone ◽  
...  

BackgroundThe association between temporal lobe epilepsy and schizophrenia suggests that the critical abnormality may be pathology within the temporal lobes. People with schizophrenia-like psychosis of epilepsy (SLPE) provide a useful group in which to examine the importance of temporal and frontal lobe dysfunction in schizophrenia.MethodA verbal fluency activation paradigm and a 99mTc HMPAO SPET were used to study frontotemporal function in people with SLPE (n = 12), schizophrenia (n = 11) and epilepsy (n = 16).ResultsPeople with SLPE differed from both other groups by showing lower blood flow in the left superior temporal gyrus during performance of a verbal fluency task compared with a word repetition task (F=5.4, P=0.01). During the verbal fluency task people with primary schizophrenia showed a greater increase in blood flow in anterior cingulate (F=4.5, P=0.02) than the other two groups. There were no between-group differences in frontal brain regions.ConclusionOur findings support an association between left temporal lobe abnormality and SLPE. The different patterns of activation observed in people with primary schizophrenia and SLPE suggests that different pathophysiological mechanisms may operate in these two groups. In SLPE the pathophysiology may be relatively confined to the dominant temporal lobe.


2013 ◽  
Vol 25 (9) ◽  
pp. 1553-1562 ◽  
Author(s):  
Merav Sabri ◽  
Colin Humphries ◽  
Matthew Verber ◽  
Jain Mangalathu ◽  
Anjali Desai ◽  
...  

In the visual modality, perceptual demand on a goal-directed task has been shown to modulate the extent to which irrelevant information can be disregarded at a sensory-perceptual stage of processing. In the auditory modality, the effect of perceptual demand on neural representations of task-irrelevant sounds is unclear. We compared simultaneous ERPs and fMRI responses associated with task-irrelevant sounds across parametrically modulated perceptual task demands in a dichotic-listening paradigm. Participants performed a signal detection task in one ear (Attend ear) while ignoring task-irrelevant syllable sounds in the other ear (Ignore ear). Results revealed modulation of syllable processing by auditory perceptual demand in an ROI in middle left superior temporal gyrus and in negative ERP activity 130–230 msec post stimulus onset. Increasing the perceptual demand in the Attend ear was associated with a reduced neural response in both fMRI and ERP to task-irrelevant sounds. These findings are in support of a selection model whereby ongoing perceptual demands modulate task-irrelevant sound processing in auditory cortex.


2007 ◽  
Vol 97 (4) ◽  
pp. 2758-2768 ◽  
Author(s):  
Christiane M. Thiel ◽  
Gereon R. Fink

Alertness is a nonselective attention component that refers to a state of general readiness that improves stimulus processing and response initiation. We used functional magnetic resonance imaging (fMRI) to identify neural correlates of visual and auditory alertness. A further aim was to investigate the modulatory effects of the cholinergic agonist nicotine. Nonsmoking participants were given either placebo or nicotine (NICORETTE gum, 2 mg) and performed a target-detection task with warned and unwarned trials in the visual and auditory modality. Our results provide evidence for modality-specific correlates of visual and auditory alertness in respective higher-level sensory cortices and in posterior parietal and frontal brain areas. The only region commonly involved in visual and auditory alertness was the right superior temporal gyrus. A connectivity analysis showed that this supramodal region exhibited modality-dependent coupling with respective higher sensory cortices. Nicotine was found to mainly decrease visual and auditory alertness-related activity in several brain regions, which was evident as a significant interaction of nicotine-induced decreases in BOLD signal in warned trials and increases in unwarned trials. The cholinergic drug also affected alerting-dependent activity in the supramodal right superior temporal gyrus; here the effect was the result of a significant increase of neural activity in unwarned trials. We conclude that the role of the right superior temporal gyrus is to induce an “alert” state in response to warning cues and thereby optimize stimulus processing and responding. We speculate that nicotine increases brain mechanisms of alertness specifically in conditions where no extrinsic warning is provided.


2014 ◽  
Vol 26 (7) ◽  
pp. 1363-1376 ◽  
Author(s):  
Manuel de Vega ◽  
Inmaculada León ◽  
Juan A. Hernández ◽  
Mitchell Valdés ◽  
Iván Padrón ◽  
...  

Some studies have reported that understanding concrete action-related words and sentences elicits activations of motor areas in the brain. The present fMRI study goes one step further by testing whether this is also the case for comprehension of nonfactual statements. Three linguistic structures were used (factuals, counterfactuals, and negations), referring either to actions or, as a control condition, to visual events. The results showed that action sentences elicited stronger activations than visual sentences in the SMA, extending to the primary motor area, as well as in regions generally associated with the planning and understanding of actions (left superior temporal gyrus, left and right supramarginal gyri). Also, we found stronger activations for action sentences than for visual sentences in the extrastriate body area, a region involved in the visual processing of human body movements. These action-related effects occurred not only in factuals but also in negations and counterfactuals, suggesting that brain regions involved in action understanding and planning are activated by default even when the actions are described as hypothetical or as not happening. Moreover, some of these regions overlapped with those activated during the observation of action videos, indicating that the act of understanding action language and that of observing real actions share neural networks. These results support the claim that embodied representations of linguistic meaning are important even in abstract linguistic contexts.


Sign in / Sign up

Export Citation Format

Share Document