scholarly journals Hyperspherical Manifold for EEG Signals of Epileptic Seizures

2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Tahir Ahmad ◽  
Vinod Ramachandran

The mathematical modelling of EEG signals of epileptic seizures presents a challenge as seizure data is erratic, often with no visible trend. Limitations in existing models indicate a need for a generalized model that can be used to analyze seizures without the need for apriori information, whilst minimizing the loss of signal data due to smoothing. This paper utilizes measure theory to design a discrete probability measure that reformats EEG data without altering its geometric structure. An analysis of EEG data from three patients experiencing epileptic seizures is made using the developed measure, resulting in successful identification of increased potential difference in portions of the brain that correspond to physical symptoms demonstrated by the patients. A mapping then is devised to transport the measure data onto the surface of a high-dimensional manifold, enabling the analysis of seizures using directional statistics and manifold theory. The subset of seizure signals on the manifold is shown to be a topological space, verifying Ahmad's approach to use topological modelling.

2010 ◽  
Vol 24 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Włodzimierz Klonowski ◽  
Pawel Stepien ◽  
Robert Stepien

Over 20 years ago, Watt and Hameroff (1987 ) suggested that consciousness may be described as a manifestation of deterministic chaos in the brain/mind. To analyze EEG-signal complexity, we used Higuchi’s fractal dimension in time domain and symbolic analysis methods. Our results of analysis of EEG-signals under anesthesia, during physiological sleep, and during epileptic seizures lead to a conclusion similar to that of Watt and Hameroff: Brain activity, measured by complexity of the EEG-signal, diminishes (becomes less chaotic) when consciousness is being “switched off”. So, consciousness may be described as a manifestation of deterministic chaos in the brain/mind.


Author(s):  
Sravanth Kumar Ramakuri ◽  
Chinmay Chakraboirty ◽  
Anudeep Peddi ◽  
Bharat Gupta

In recent years, a vast research is concentrated towards the development of electroencephalography (EEG)-based human-computer interface in order to enhance the quality of life for medical as well as nonmedical applications. The EEG is an important measurement of brain activity and has great potential in helping in the diagnosis and treatment of mental and brain neuro-degenerative diseases and abnormalities. In this chapter, the authors discuss the classification of EEG signals as a key issue in biomedical research for identification and evaluation of the brain activity. Identification of various types of EEG signals is a complicated problem, requiring the analysis of large sets of EEG data. Representative features from a large dataset play an important role in classifying EEG signals in the field of biomedical signal processing. So, to reduce the above problem, this research uses three methods to classify through feature extraction and classification schemes.


Detection of artifacts produced in EEG data by eye blinks is a very common problem in EEG research. In this paper we address the detection of eye blink artifacts in a motor imagery (MI) EEG data. Artifacts are nothing but some kind of disturbances present in the brain signal whose origin is not the brain itself. Detection of unwanted artifacts plays a crucial role to acquire artifact free and clean brain EEG signals to analyze and detect brain activities. There are generally two ways of generation of artifacts. From a recorded signal most common and important artifacts in the form of eye blinks are recognized and encapsulated. In this paper a new software tool named BRAINSTORM is introduced for the detection of eye blink artifacts.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Lin Gan ◽  
Mu Zhang ◽  
Jiajia Jiang ◽  
Fajie Duan

People are ingesting various information from different sense organs all the time to complete different cognitive tasks. The brain integrates and regulates this information. The two significant sensory channels for receiving external information are sight and hearing that have received extensive attention. This paper mainly studies the effect of music and visual-auditory stimulation on electroencephalogram (EEG) of happy emotion recognition based on a complex system. In the experiment, the presentation was used to prepare the experimental stimulation program, and the cognitive neuroscience experimental paradigm of EEG evoked by happy emotion pictures was established. Using 93 videos as natural stimuli, fMRI data were collected. Finally, the collected EEG signals were removed with the eye artifact and baseline drift, and the t-test was used to analyze the significant differences of different lead EEG data. Experimental data shows that, by adjusting the parameters of the convolutional neural network, the highest accuracy of the two-classification algorithm can reach 98.8%, and the average accuracy can reach 83.45%. The results show that the brain source under the combined visual and auditory stimulus is not a simple superposition of the brain source of the single visual and auditory stimulation, but a new interactive source is generated.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Roozbeh Zarei ◽  
Jing He ◽  
Siuly Siuly ◽  
Guangyan Huang ◽  
Yanchun Zhang

Discovering the concealed patterns of Electroencephalogram (EEG) signals is a crucial part in efficient detection of epileptic seizures. This study develops a new scheme based on Douglas-Peucker algorithm (DP) and principal component analysis (PCA) for extraction of representative and discriminatory information from epileptic EEG data. As the multichannel EEG signals are highly correlated and are in large volumes, the DP algorithm is applied to extract the most representative samples from EEG data. The PCA is utilised to produce uncorrelated variables and to reduce the dimensionality of the DP samples for better recognition. To verify the robustness of the proposed method, four machine learning techniques, random forest classifier (RF), k-nearest neighbour algorithm (k-NN), support vector machine (SVM), and decision tree classifier (DT), are employed on the obtained features. Furthermore, we assess the performance of the proposed methods by comparing it with some recently reported algorithms. The experimental results show that the DP technique effectively extracts the representative samples from EEG signals compressing up to over 47% sample points of EEG signals. The results also indicate that the proposed feature method with the RF classifier achieves the best performance and yields 99.85% of the overall classification accuracy (OCA). The proposed method outperforms the most recently reported methods in terms of OCA in the same epileptic EEG database.


2021 ◽  
pp. 50-52
Author(s):  
N Shweta ◽  
Nagendra H

An electroencephalogram (EEG) is a test that records electrical activity in the brain. Epileptic seizures affect approximately 50 million people worldwide, making it one of the most serious neurological disorders. Seizures cause a loss of consciousness, but there are no specic signs associated with epileptic seizures. analysing the brain's activity during seizures and locating the seizure duration in EEG recordings is difcult and time consuming. A discrete wavelet transform (DWT), which is an effective tool for decomposing EEG signals into delta, theta, alpha, beta, and gamma ( and ) frequency bands. For research, the db4 is used, which has a morphological d,q,a,b g structure that is different to that of EEG.


2019 ◽  
Vol 19 (01) ◽  
pp. 1940003 ◽  
Author(s):  
G. MURALIDHAR BAIRY ◽  
YUKI HAGIWARA

Epilepsy is a chronic illness of the brain characterized by recurring seizure attacks. Electroencephalogram (EEG) can record the electrical activity of the brain and is extensively used to analyze and diagnose epileptic seizures. However, the EEG signals are highly non-linear and chaotic and are difficult to analyze due to their small magnitude. Hence, empirical mode decomposition (EMD), a non-linear technique, has been widely adopted to capture the subtle changes present in the EEG signals. Hence, it is an added advantage to develop an automated computer-aided diagnostic (CAD) system to detect the different brain activities from the EEG signals using machine learning approaches. In this paper, we focus on the previous works which have used the EMD technique in the automated detection of normal or epileptic EEG signals.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Phuong Thi Mai Nguyen ◽  
Yoshikatsu Hayashi ◽  
Murilo Da Silva Baptista ◽  
Toshiyuki Kondo

Abstract Understanding the brain is important in the fields of science, medicine, and engineering. A promising approach to better understand the brain is through computing models. These models were adjusted to reproduce data collected from the brain. One of the most commonly used types of data in neuroscience comes from electroencephalography (EEG), which records the tiny voltages generated when neurons in the brain are activated. In this study, we propose a model based on complex networks of weakly connected dynamical systems (Hindmarsh–Rose neurons or Kuramoto oscillators), set to operate in a dynamic regime recognized as Collective Almost Synchronization (CAS). Our model not only successfully reproduces EEG data from both healthy and epileptic EEG signals, but it also predicts EEG features, the Hurst exponent, and the power spectrum. The proposed model is able to forecast EEG signals 5.76 s in the future. The average forecasting error was 9.22%. The random Kuramoto model produced the outstanding result for forecasting seizure EEG with an error of 11.21%.


2018 ◽  
Vol 28 (06) ◽  
pp. 1750064 ◽  
Author(s):  
Vitaly Schetinin ◽  
Livija Jakaite ◽  
Ndifreke Nyah ◽  
Dusica Novakovic ◽  
Wojtek Krzanowski

The brain activity observed on EEG electrodes is influenced by volume conduction and functional connectivity of a person performing a task. When the task is a biometric test the EEG signals represent the unique “brain print”, which is defined by the functional connectivity that is represented by the interactions between electrodes, whilst the conduction components cause trivial correlations. Orthogonalization using autoregressive modeling minimizes the conduction components, and then the residuals are related to features correlated with the functional connectivity. However, the orthogonalization can be unreliable for high-dimensional EEG data. We have found that the dimensionality can be significantly reduced if the baselines required for estimating the residuals can be modeled by using relevant electrodes. In our approach, the required models are learnt by a Group Method of Data Handling (GMDH) algorithm which we have made capable of discovering reliable models from multidimensional EEG data. In our experiments on the EEG-MMI benchmark data which include 109 participants, the proposed method has correctly identified all the subjects and provided a statistically significant ([Formula: see text]) improvement of the identification accuracy. The experiments have shown that the proposed GMDH method can learn new features from multi-electrode EEG data, which are capable to improve the accuracy of biometric identification.


2021 ◽  
Author(s):  
Gang Liu ◽  
Jing Wang

<div><div> <p><a></a></p><div> <p><a></a><a><i>Objective. </i></a>Modeling the brain as a white box is vital for investigating the brain. However, the physical properties of the human brain are unclear. Therefore, BCI algorithms using EEG signals are generally a data-driven approach and generate a black- or gray-box model. This paper presents the first EEG-based BCI algorithm (EEGBCI using Gang neurons, EEGG) decomposing the brain into some simple components with physical meaning and integrating recognition and analysis of brain activity. </p> <p><i>Approach. </i>Independent and interactive components of neurons or brain regions can fully describe the brain. This paper constructed a relationship frame based on the independent and interactive compositions for intention recognition and analysis using a novel dendrite module of Gang neurons. A total of 4,906 EEG data of left- and right-hand motor imagery(MI) from 26 subjects were obtained from GigaDB. Firstly, this paper explored EEGG’s classification performance by cross-subject accuracy. Secondly, this paper transformed the trained EEGG model into a relation spectrum expressing independent and interactive components of brain regions. Then, the relation spectrum was verified using the known ERD/ERS phenomenon. Finally, this paper explored the previously unreachable further BCIbased analysis of the brain. </p> <p><i>Main results. </i>(1) EEGG was more robust than typical “CSP+” algorithms for the poorquality data. (2) The relation spectrum showed the known ERD/ERS phenomenon. (3) Interestingly, EEGG showed that interactive components between brain regions suppressed ERD/ERS effects on classification. This means that generating fine hand intention needs more centralized activation in the brain. </p> <p><i>Significance. </i>EEGG decomposed the biological EEG-intention system of this paper into the relation spectrum inheriting the Taylor series (<i>in analogy with the data-driven but human-readable Fourier transform and frequency spectrum</i>), which offers a novel frame for analysis of the brain.</p> </div> </div></div><div><p></p></div>


Sign in / Sign up

Export Citation Format

Share Document