scholarly journals Heterogeneous nucleation of a common atmospheric aerosol: Ammonium sulfate

1998 ◽  
Vol 25 (24) ◽  
pp. 4469-4472 ◽  
Author(s):  
Susan Oatis ◽  
Dan Imre ◽  
Robert McGraw ◽  
Jun Xu
2001 ◽  
Vol 32 ◽  
pp. 295-296
Author(s):  
B. ZUBERI ◽  
A.K. BERTRAM ◽  
L.T. MOLINA ◽  
M.J. MOLINA

2013 ◽  
Vol 13 (2) ◽  
pp. 717-740 ◽  
Author(s):  
E. Mikhailov ◽  
S. Vlasenko ◽  
D. Rose ◽  
U. Pöschl

Abstract. In this study we derive and apply a mass-based hygroscopicity parameter interaction model for efficient description of concentration-dependent water uptake by atmospheric aerosol particles with complex chemical composition. The model approach builds on the single hygroscopicity parameter model of Petters and Kreidenweis (2007). We introduce an observable mass-based hygroscopicity parameter κm which can be deconvoluted into a dilute hygroscopicity parameter (κm0) and additional self- and cross-interaction parameters describing non-ideal solution behavior and concentration dependencies of single- and multi-component systems. For reference aerosol samples of sodium chloride and ammonium sulfate, the κm-interaction model (KIM) captures the experimentally observed concentration and humidity dependence of the hygroscopicity parameter and is in good agreement with an accurate reference model based on the Pitzer ion-interaction approach (Aerosol Inorganic Model, AIM). Experimental results for pure organic particles (malonic acid, levoglucosan) and for mixed organic-inorganic particles (malonic acid – ammonium sulfate) are also well reproduced by KIM, taking into account apparent or equilibrium solubilities for stepwise or gradual deliquescence and efflorescence transitions. The mixed organic-inorganic particles as well as atmospheric aerosol samples exhibit three distinctly different regimes of hygroscopicity: (I) a quasi-eutonic deliquescence & efflorescence regime at low-humidity where substances are just partly dissolved and exist also in a non-dissolved phase, (II) a gradual deliquescence & efflorescence regime at intermediate humidity where different solutes undergo gradual dissolution or solidification in the aqueous phase; and (III) a dilute regime at high humidity where the solutes are fully dissolved approaching their dilute hygroscopicity. For atmospheric aerosol samples collected from boreal rural air and from pristine tropical rainforest air (secondary organic aerosol) we present first mass-based measurements of water uptake over a wide range of relative humidity (1–99.4%) obtained with a new filter-based differential hygroscopicity analyzer (FDHA) technique. For these samples the concentration dependence of κm can be described by a simple KIM model equation based on observable mass growth factors and a total of only six fit parameters summarizing the combined effects of the dilute hygroscopicity parameters, self- and cross-interaction parameters, and solubilities of all involved chemical components. One of the fit parameters represents κm0 and can be used to predict critical dry diameters for the activation of cloud condensation nuclei (CCN) as a function of water vapor supersaturation according to Köhler theory. For sodium chloride and ammonium sulfate reference particles as well as for pristine rainforest aerosols consisting mostly of secondary organic matter, we obtained good agreement between the KIM predictions and measurement data of CCN activation. The application of KIM and mass-based measurement techniques shall help to bridge gaps in the current understanding of water uptake by atmospheric aerosols: (1) the gap between hygroscopicity parameters determined by hygroscopic growth measurements under sub-saturated conditions and by CCN activation measurements at water vapor supersaturation, and (2) the gap between the results of simplified single parameter models widely used in atmospheric or climate science and the results of complex multi-parameter ion- and molecule-interaction models frequently used in physical chemistry and solution thermodynamics (e.g., AIM, E-AIM, ADDEM, UNIFAC, AIOMFAC).


2019 ◽  
Vol 12 (7) ◽  
pp. 3841-3851 ◽  
Author(s):  
Daisy N. Grace ◽  
Melissa B. Sebold ◽  
Melissa M. Galloway

Abstract. Atmospheric particles contain thousands of compounds with many different functional groups and a wide range of polarities. Typical separation methods for aqueous atmospheric systems include reverse-phase liquid chromatography or derivatization of analytes of interest followed by gas chromatography. This study introduces supercritical fluid chromatography–mass spectrometry as a separation method for the methylglyoxal–ammonium sulfate reaction mixture (a proxy for aqueous atmospheric aerosol mimics). Several column compositions, mobile-phase modifiers, and column temperatures were examined to determine their effect on separation and optimum conditions for separation. Polar columns such as the Viridis UPC2™ BEH column combined with a mobile-phase gradient of carbon dioxide and methanol provided the best separation of compounds in the mixture and, when coupled to an electrospray ionization tandem mass spectrometer, allowed for detection of several new masses in the methylglyoxal–ammonium sulfate reaction mixture as well as the possible identification of several isomers. This analysis method can be extended to other aqueous aerosol mimics, including the mixtures of other aldehydes or organic acids with ammonium or small amines.


2017 ◽  
Author(s):  
Agnieszka Kupc ◽  
Christina Williamson ◽  
Nicholas L. Wagner ◽  
Mathews Richardson ◽  
Charles A. Brock

Abstract. Atmospheric aerosol is a key component of the chemistry and climate of the Earth's atmosphere. Accurate measurement of the concentration of atmospheric particles as a function of their size is fundamental to investigations of particle microphysics, optical characteristics, and chemical processes. We describe the modification, calibration, and performance of two commercially available, ultra-high sensitivity aerosol spectrometers (UHSASs) as used on the NASA DC-8 aircraft during the Atmospheric Tomography Mission (ATom). To avoid sample flow issues related to pressure variations during aircraft altitude changes, we installed a laminar flow meter on each instrument to measure sample flow directly at the inlet as well as flow controllers to maintain constant volumetric sheath flows. In addition, we added a compact thermodenuder operating at 300 °C to the inlet line of one of the instruments. With these modifications, the instruments are capable of making accurate (ranging from 7 % for Dp  0.13 μm), precise ( 1000 to 225 hPa, while simultaneously providing information on particle volatility. We assessed the effect of uncertainty in the refractive index (n) of ambient particles that are sized by the UHSAS assuming the refractive index of ammonium sulfate (n = 1.52). For calibration particles with n between 1.44 and 1.58, the UHSAS diameter varies by +4/−10 % relative to ammonium sulfate. This diameter uncertainty associated with the range of refractive indices (i.e. particle composition) translates to aerosol surface area and volume uncertainties of +8.4/−17.8 % and +12.4/−27.5 % respectively. Additional to sizing uncertainty, low counting statistics can lead to uncertainties of


Author(s):  
J. W. Mellowes ◽  
C. M. Chun ◽  
I. A. Aksay

Mullite (3Al2O32SiO2) can be fabricated by transient viscous sintering using composite particles which consist of inner cores of a-alumina and outer coatings of amorphous silica. Powder compacts prepared with these particles are sintered to almost full density at relatively low temperatures (~1300°C) and converted to dense, fine-grained mullite at higher temperatures (>1500°C) by reaction between the alumina core and the silica coating. In order to achieve complete mullitization, optimal conditions for coating alumina particles with amorphous silica must be achieved. Formation of amorphous silica can occur in solution (homogeneous nucleation) or on the surface of alumina (heterogeneous nucleation) depending on the degree of supersaturation of the solvent in which the particles are immersed. Successful coating of silica on alumina occurs when heterogeneous nucleation is promoted and homogeneous nucleation is suppressed. Therefore, one key to successful coating is an understanding of the factors such as pH and concentration that control silica nucleation in aqueous solutions. In the current work, we use TEM to determine the optimal conditions of this processing.


1968 ◽  
Vol 20 (03/04) ◽  
pp. 457-464 ◽  
Author(s):  
L Gonyea ◽  
R Herdman ◽  
R. A Bridges

SummaryAn anticoagulant occurring in 4 of 6 patients with SLE has been demonstrated by a sensitive assay utilizing an ammonium sulfate fraction of serum. The anticoagulant functions as an inhibitor of the activation of prothrombin. No species specificity was demonstrable. The inhibitor behaves clinically and chromatographically as an immunoglobulin, although an attempt to demonstrate directly the antibody nature of the inhibitor was not successful.A severe, apparently independent, decrease in the level of prothrombin was observed in the patient with hemorrhagic symptoms. In contrast to the anticoagulant activity, the low prothrombin has persisted during treatment.


Sign in / Sign up

Export Citation Format

Share Document