Numerical simulation of the Gulf Stream System: The Loop Current and the deep circulation

2003 ◽  
Vol 108 (C2) ◽  
pp. n/a-n/a ◽  
Author(s):  
Hyun-Chul Lee ◽  
George L. Mellor
2001 ◽  
Vol 18 (1-2) ◽  
pp. 17-27 ◽  
Author(s):  
R. Gerdes ◽  
A. Biastoch ◽  
R. Redler

2014 ◽  
Vol 740 ◽  
pp. 97-113 ◽  
Author(s):  
Joseph J. Kuehl ◽  
V. A. Sheremet

AbstractThe problem of oceanic gap-traversing boundary currents, such as the Kuroshio current crossing the Luzon Strait or the Gulf Stream traversing the mouth of the Gulf of Mexico, is considered. Systems such as these are known to admit two dominant states: leaping across the gap or penetrating into the gap forming a loop current. Which state the system will assume and when transitions between states will occur are open problems. Sheremet (J. Phys. Oceanogr., vol. 31, 2001, pp. 1247–1259) proposed, based on idealized barotropic numerical results, that variation in the current’s inertia is responsible for these transitions and that the system admits multiple states. Generalized versions of these results have been confirmed by barotropic rotating-table experiments (Sheremet & Kuehl, J. Phys. Oceanogr., vol. 37, 2007, 1488–1495; Kuehl & Sheremet,J. Mar. Res., vol. 67, 2009, pp. 25–42). However, the typical structure of oceanic boundary currents, such as the Gulf Stream or Kuroshio, consists of an upper-layer intensified flow riding atop a weakly circulating lower layer. To more accurately address this oceanic situation, the present work extends the above findings by considering two-layer rotating table experiments. The flow is driven by pumping water through sponges and vertical seals, creating a Sverdrup interior circulation in the upper layer which impinges on a ridge where a boundary current is formed. The $\beta $ effect is incorporated in both layers by a sloping rigid lid as well as a sloping bottom and the flow is visualized with the particle image velocimetry method. The experimental set-up is found to produce boundary currents consistent with theory. The existence of multiple states and hysteresis, characterized by a cusp topology of solutions, is found to be robust to stratification and various properties of the two-layer system are explored.


Ocean Science ◽  
2014 ◽  
Vol 10 (6) ◽  
pp. 947-965 ◽  
Author(s):  
Y. S. Androulidakis ◽  
V. H. Kourafalou ◽  
M. Le Hénaff

Abstract. The anticyclonic Loop Current Eddy (LCE) shedding events are strongly associated with the evolution of Loop Current Frontal Eddies (LCFEs) over the eastern Gulf of Mexico (GoM). A numerical simulation, in tandem with in situ measurements and satellite data, was used to investigate the Loop Current (LC) evolution and the surrounding LCFE formation, structure, growth and migration during the Eddy Ekman and Eddy Franklin shedding events in the summers of 2009 and 2010, respectively. During both events, northern GoM LCFEs appeared vertically coherent to at least 1500 m in temperature observations. They propagated towards the base of the LC, where, together with the migration of Campeche Bank (southwest GoM shelf) eddies from south of the LC, contributed to its "necking-down". Growth of Campeche Bank LCFEs involved in Eddy Franklin was partially attributed to Campeche Bank waters following upwelling events. Slope processes associated with such upwelling included offshore exports of high positive potential vorticity that may trigger cyclone formation and growth. The advection and growth of LCFEs, originating from the northern and southern GoM, and their interaction with the LC over the LCE detachment area favor shedding conditions and may contribute to the final separation of the LCE.


2020 ◽  
Vol 50 (4) ◽  
pp. 1045-1064 ◽  
Author(s):  
Steven L. Morey ◽  
Ganesh Gopalakrishnan ◽  
Enric Pallás Sanz ◽  
Joao Marcos Azevedo Correia De Souza ◽  
Kathleen Donohue ◽  
...  

AbstractThree simulations of the circulation in the Gulf of Mexico (the “Gulf”) using different numerical general circulation models are compared with results of recent large-scale observational campaigns conducted throughout the deep (>1500 m) Gulf. Analyses of these observations have provided new understanding of large-scale mean circulation features and variability throughout the deep Gulf. Important features include cyclonic flow along the continental slope, deep cyclonic circulation in the western Gulf, a counterrotating pair of cells under the Loop Current region, and a cyclonic cell to the south of this pair. These dominant circulation features are represented in each of the ocean model simulations, although with some obvious differences. A striking difference between all the models and the observations is that the simulated deep eddy kinetic energy under the Loop Current region is generally less than one-half of that computed from observations. A multidecadal integration of one of these numerical simulations is used to evaluate the uncertainty of estimates of velocity statistics in the deep Gulf computed from limited-length (4 years) observational or model records. This analysis shows that the main deep circulation features identified from the observational studies appear to be robust and are not substantially impacted by variability on time scales longer than the observational records. Differences in strengths and structures of the circulation features are identified, however, and quantified through standard error analysis of the statistical estimates using the model solutions.


1996 ◽  
Vol 23 (22) ◽  
pp. 3155-3158 ◽  
Author(s):  
Yi Chao ◽  
Avijit Gangopadhyay ◽  
Frank O. Bryan ◽  
William R. Holland
Keyword(s):  

2019 ◽  
Vol 49 (8) ◽  
pp. 2115-2132 ◽  
Author(s):  
Joël J.-M. Hirschi ◽  
Eleanor Frajka-Williams ◽  
Adam T. Blaker ◽  
Bablu Sinha ◽  
Andrew Coward ◽  
...  

AbstractSatellite observations and output from a high-resolution ocean model are used to investigate how the Loop Current in the Gulf of Mexico affects the Gulf Stream transport through the Florida Straits. We find that the expansion (contraction) of the Loop Current leads to lower (higher) transports through the Straits of Florida. The associated surface velocity anomalies are coherent from the southwestern tip of Florida to Cape Hatteras. A simple continuity-based argument can be used to explain the link between the Loop Current and the downstream Gulf Stream transport: as the Loop Current lengthens (shortens) its path in the Gulf of Mexico, the flow out of the Gulf decreases (increases). Anomalies in the surface velocity field are first seen to the southwest of Florida and within 4 weeks propagate through the Florida Straits up to Cape Hatteras and into the Gulf Stream Extension. In both the observations and the model this propagation can be seen as pulses in the surface velocities. We estimate that the Loop Current variability can be linked to a variability of several Sverdrups (1Sv = 106 m3 s−1) through the Florida Straits. The exact timing of the Loop Current variability is largely unpredictable beyond a few weeks and its variability is therefore likely a major contributor to the chaotic/intrinsic variability of the Gulf Stream. However, the time lag between the Loop Current and the flow downstream of the Gulf of Mexico means that if a lengthening/shortening of the Loop Current is observed this introduces some predictability in the downstream flow for a few weeks.


2000 ◽  
Vol 105 (C7) ◽  
pp. 16951-16959 ◽  
Author(s):  
Susan Elizabeth Welsh ◽  
Masamichi Inoue

Sign in / Sign up

Export Citation Format

Share Document