Two-layer gap-leaping oceanic boundary currents: experimental investigation

2014 ◽  
Vol 740 ◽  
pp. 97-113 ◽  
Author(s):  
Joseph J. Kuehl ◽  
V. A. Sheremet

AbstractThe problem of oceanic gap-traversing boundary currents, such as the Kuroshio current crossing the Luzon Strait or the Gulf Stream traversing the mouth of the Gulf of Mexico, is considered. Systems such as these are known to admit two dominant states: leaping across the gap or penetrating into the gap forming a loop current. Which state the system will assume and when transitions between states will occur are open problems. Sheremet (J. Phys. Oceanogr., vol. 31, 2001, pp. 1247–1259) proposed, based on idealized barotropic numerical results, that variation in the current’s inertia is responsible for these transitions and that the system admits multiple states. Generalized versions of these results have been confirmed by barotropic rotating-table experiments (Sheremet & Kuehl, J. Phys. Oceanogr., vol. 37, 2007, 1488–1495; Kuehl & Sheremet,J. Mar. Res., vol. 67, 2009, pp. 25–42). However, the typical structure of oceanic boundary currents, such as the Gulf Stream or Kuroshio, consists of an upper-layer intensified flow riding atop a weakly circulating lower layer. To more accurately address this oceanic situation, the present work extends the above findings by considering two-layer rotating table experiments. The flow is driven by pumping water through sponges and vertical seals, creating a Sverdrup interior circulation in the upper layer which impinges on a ridge where a boundary current is formed. The $\beta $ effect is incorporated in both layers by a sloping rigid lid as well as a sloping bottom and the flow is visualized with the particle image velocimetry method. The experimental set-up is found to produce boundary currents consistent with theory. The existence of multiple states and hysteresis, characterized by a cusp topology of solutions, is found to be robust to stratification and various properties of the two-layer system are explored.

1969 ◽  
Vol 39 (3) ◽  
pp. 511-528 ◽  
Author(s):  
A. T. Parsons

A study is made of the wind-driven circulation of a two-layer ocean within a square basin, with a view to describing the observed separation of western boundary currents. The lower layer is allowed to surface and the line along which the upper-layer depth vanishes is interpreted as the region of the surfacing thermocline. For a representative wind stress the theory predicts the gross features of the Gulf Stream flow, the region adjacent to the surfacing line containing the separated boundary current. By assuming that the effects of friction and inertia are confined to regions of a boundary-layer character, the position of a separated current is shown to depend only on the degree of stratification and certain integral properties of the applied wind stress.


2019 ◽  
Vol 49 (6) ◽  
pp. 1463-1483 ◽  
Author(s):  
Peter Hamilton ◽  
Amy Bower ◽  
Heather Furey ◽  
Robert Leben ◽  
Paula Pérez-Brunius

AbstractA set of float trajectories, deployed at 1500- and 2500-m depths throughout the deep Gulf of Mexico from 2011 to 2015, are analyzed for mesoscale processes under the Loop Current (LC). In the eastern basin, December 2012–June 2014 had >40 floats per month, which was of sufficient density to allow capturing detailed flow patterns of deep eddies and topographic Rossby waves (TRWs), while two LC eddies formed and separated. A northward advance of the LC front compresses the lower water column and generates an anticyclone. For an extended LC, baroclinic instability eddies (of both signs) develop under the southward-propagating large-scale meanders of the upper-layer jet, resulting in a transfer of eddy kinetic energy (EKE) to the lower layer. The increase in lower-layer EKE occurs only over a few months during meander activity and LC eddy detachment events, a relatively short interval compared with the LC intrusion cycle. Deep EKE of these eddies is dispersed to the west and northwest through radiating TRWs, of which examples were found to the west of the LC. Because of this radiation of EKE, the lower layer of the eastern basin becomes relatively quiescent, particularly in the northeastern basin, when the LC is retracted and a LC eddy has departed. A mean west-to-east, anticyclone–cyclone dipole flow under a mean LC was directly comparable to similar results from a previous moored LC array and also showed connections to an anticlockwise boundary current in the southeastern basin.


Eos ◽  
2015 ◽  
Vol 96 ◽  
Author(s):  
Terri Cook

Ship surveys show that the "Gulf Stream" of the Pacific is not a stable boundary current.


2016 ◽  
Vol 46 (1) ◽  
pp. 327-348 ◽  
Author(s):  
Robert E. Todd ◽  
W. Brechner Owens ◽  
Daniel L. Rudnick

AbstractPotential vorticity structure in two segments of the North Atlantic’s western boundary current is examined using concurrent, high-resolution measurements of hydrography and velocity from gliders. Spray gliders occupied 40 transects across the Loop Current in the Gulf of Mexico and 11 transects across the Gulf Stream downstream of Cape Hatteras. Cross-stream distributions of the Ertel potential vorticity and its components are calculated for each transect under the assumptions that all flow is in the direction of measured vertically averaged currents and that the flow is geostrophic. Mean cross-stream distributions of hydrographic properties, potential vorticity, and alongstream velocity are calculated for both the Loop Current and the detached Gulf Stream in both depth and density coordinates. Differences between these mean transects highlight the downstream changes in western boundary current structure. As the current increases its transport downstream, upper-layer potential vorticity is generally reduced because of the combined effects of increased anticyclonic relative vorticity, reduced stratification, and increased cross-stream density gradients. The only exception is within the 20-km-wide cyclonic flank of the Gulf Stream, where intense cyclonic relative vorticity results in more positive potential vorticity than in the Loop Current. Cross-stream gradients of mean potential vorticity satisfy necessary conditions for both barotropic and baroclinic instability within the western boundary current. Instances of very low or negative potential vorticity, which predispose the flow to various overturning instabilities, are observed in individual transects across both the Loop Current and the Gulf Stream.


1980 ◽  
Vol 100 (4) ◽  
pp. 739-767 ◽  
Author(s):  
Judith Y. Holyer ◽  
Herbert E. Huppert

This paper presents a study of steady gravity currents entering a two-layer system, with the current travelling either along the boundary to form a boundary current, or between the two different layers to form an intrusion. It is shown that, at the front of an intrusion, the streamlines meet at angles of 120° at a stagnation point. For an energy-conserving current the volume inflow rate to the current, the velocity of propagation and the downstream depths are determined. In contrast to the pioneering study of Benjamin (1968), it is found that the depth of the current is not always uniquely determined and it is necessary to use some principle additional to the conservation relationships to determine which solution occurs. An appropriate principle is obtained by considering dissipative currents. In general, if the volume inflow rate to a current is prescribed, the current loses energy in order to maintain a momentum balance. We thus suggest the criterion that the energy dissipation is a maximum for a fixed volume inflow rate. It is postulated that the energy which is lost will go to form a stationary wave train behind the current. A nonlinear calculation is carried out to determine the amplitude and wavelength of these waves for intrusions. Such waves have been observed on intrusions in laboratory experiments and the results of the calculation are found to agree well with the experiments. Similar waves have not been observed on boundary currents because the resulting waves have too much energy and break.


2005 ◽  
Vol 35 (6) ◽  
pp. 1037-1053 ◽  
Author(s):  
Robert S. Pickart ◽  
Daniel J. Torres ◽  
Paula S. Fratantoni

Abstract High-resolution hydrographic and velocity measurements across the East Greenland shelf break south of Denmark Strait have revealed an intense, narrow current banked against the upper continental slope. This is believed to be the result of dense water cascading over the shelf edge and entraining ambient water. The current has been named the East Greenland Spill Jet. It resides beneath the East Greenland/Irminger Current and transports roughly 2 Sverdrups of water equatorward. Strong vertical mixing occurs during the spilling, although the entrainment farther downstream is minimal. A vorticity analysis reveals that the increase in cyclonic relative vorticity within the jet is partly balanced by tilting vorticity, resulting in a sharp front in potential vorticity reminiscent of the Gulf Stream. The other components of the Irminger Sea boundary current system are described, including a presentation of absolute transports.


2008 ◽  
Vol 38 (10) ◽  
pp. 2294-2307 ◽  
Author(s):  
Hristina G. Hristova ◽  
Joseph Pedlosky ◽  
Michael A. Spall

Abstract A linear stability analysis of a meridional boundary current on the beta plane is presented. The boundary current is idealized as a constant-speed meridional jet adjacent to a semi-infinite motionless far field. The far-field region can be situated either on the eastern or the western side of the jet, representing a western or an eastern boundary current, respectively. It is found that when unstable, the meridional boundary current generates temporally growing propagating waves that transport energy away from the locally unstable region toward the neutral far field. This is the so-called radiating instability and is found in both barotropic and two-layer baroclinic configurations. A second but important conclusion concerns the differences in the stability properties of eastern and western boundary currents. An eastern boundary current supports a greater number of radiating modes over a wider range of meridional wavenumbers. It generates waves with amplitude envelopes that decay slowly with distance from the current. The radiating waves tend to have an asymmetrical horizontal structure—they are much longer in the zonal direction than in the meridional, a consequence of which is that unstable eastern boundary currents, unlike western boundary currents, have the potential to act as a source of zonal jets for the interior of the ocean.


2019 ◽  
Author(s):  
Tsubasa Kohyama ◽  
Hiroaki Miura ◽  
Shoichiro Kido
Keyword(s):  

Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 465 ◽  
Author(s):  
Yuhao Ding ◽  
Qi Liu ◽  
Ping Lao

Low-level warm clouds are a major component in multilayered cloud systems and they are generally hidden from the top-down view of satellites with passive measurements. This study conducts an investigation on oceanic warm clouds embedded in multilayered structures by using spaceborne radar data with fine vertical resolution. The occurrences of warm cloud overlapping and the geometric features of several kinds of warm cloud layers are examined. It is found that there are three main types of cloud systems that involve warm cloud layers, including warm single layer clouds, cold-warm double layer clouds, and warm-warm double layer clouds. The two types of double layer clouds account for 23% and in the double layer occurrences warm-warm double layer subsets contribute about 13%. The global distribution patterns of these three types differ from each other. Single-layer warm clouds and the lower warm clouds in the cold-warm double layer system they have nearly identical geometric parameters, while the upper and lower layer warm clouds in the warm-warm double layer system are distinct from the previous two forms of warm cloud layers. In contrast to the independence of the two cloud layers in cold-warm double layer system, the two kinds of warm cloud layers in the warm-warm double layer system may be coupled. The distance between the two layers in the warm-warm double layer system is weakly dependent on cloud thickness. Given the upper and lower cloud layer with moderate thickness of around 1 km, the cloudless gap reaches its maximum when exceeding 600 m. The cloudless gap decreases in thickness as the two cloud layers become even thinner or thicker.


Sign in / Sign up

Export Citation Format

Share Document