scholarly journals Extending records of the isotopic composition of atmospheric N2O back to 1800 A.D. from air trapped in snow at the South Pole and the Greenland Ice Sheet Project II ice core

2002 ◽  
Vol 16 (4) ◽  
pp. 76-1-76-10 ◽  
Author(s):  
Todd Sowers ◽  
Amy Rodebaugh ◽  
Naohiro Yoshida ◽  
Sakae Toyoda
Eos ◽  
2016 ◽  
Vol 97 ◽  
Author(s):  
Francesco S. R. Pausata ◽  
Allegra LeGrande ◽  
William Roberts

On the Puzzling Features of Greenland Ice-Core Isotopic Composition; Copenhagen, Denmark, 26–28 October 2015


2020 ◽  
Vol 16 (3) ◽  
pp. 819-832 ◽  
Author(s):  
Tyler J. Fudge ◽  
David A. Lilien ◽  
Michelle Koutnik ◽  
Howard Conway ◽  
C. Max Stevens ◽  
...  

Abstract. The South Pole Ice Core (SPICEcore), which spans the past 54 300 years, was drilled far from an ice divide such that ice recovered at depth originated upstream of the core site. If the climate is different upstream, the climate history recovered from the core will be a combination of the upstream conditions advected to the core site and temporal changes. Here, we evaluate the impact of ice advection on two fundamental records from SPICEcore: accumulation rate and water isotopes. We determined past locations of ice deposition based on GPS measurements of the modern velocity field spanning 100 km upstream, where ice of ∼20 ka age would likely have originated. Beyond 100 km, there are no velocity measurements, but ice likely originates from Titan Dome, an additional 90 km distant. Shallow radar measurements extending 100 km upstream from the core site reveal large (∼20 %) variations in accumulation but no significant trend. Water isotope ratios, measured at 12.5 km intervals for the first 100 km of the flowline, show a decrease with elevation of −0.008 ‰ m−1 for δ18O. Advection adds approximately 1 ‰ for δ18O to the Last Glacial Maximum (LGM)-to-modern change. We also use an existing ensemble of continental ice-sheet model runs to assess the ice-sheet elevation change through time. The magnitude of elevation change is likely small and the sign uncertain. Assuming a lapse rate of 10 ∘C km−1 of elevation, the inference of LGM-to-modern temperature change is ∼1.4 ∘C smaller than if the flow from upstream is not considered.


2016 ◽  
Vol 12 (9) ◽  
pp. 1933-1948 ◽  
Author(s):  
Amaelle Landais ◽  
Valérie Masson-Delmotte ◽  
Emilie Capron ◽  
Petra M. Langebroek ◽  
Pepijn Bakker ◽  
...  

Abstract. The last interglacial period (LIG, ∼ 129–116 thousand years ago) provides the most recent case study of multimillennial polar warming above the preindustrial level and a response of the Greenland and Antarctic ice sheets to this warming, as well as a test bed for climate and ice sheet models. Past changes in Greenland ice sheet thickness and surface temperature during this period were recently derived from the North Greenland Eemian Ice Drilling (NEEM) ice core records, northwest Greenland. The NEEM paradox has emerged from an estimated large local warming above the preindustrial level (7.5 ± 1.8 °C at the deposition site 126 kyr ago without correction for any overall ice sheet altitude changes between the LIG and the preindustrial period) based on water isotopes, together with limited local ice thinning, suggesting more resilience of the real Greenland ice sheet than shown in some ice sheet models. Here, we provide an independent assessment of the average LIG Greenland surface warming using ice core air isotopic composition (δ15N) and relationships between accumulation rate and temperature. The LIG surface temperature at the upstream NEEM deposition site without ice sheet altitude correction is estimated to be warmer by +8.5 ± 2.5 °C compared to the preindustrial period. This temperature estimate is consistent with the 7.5 ± 1.8 °C warming initially determined from NEEM water isotopes but at the upper end of the preindustrial period to LIG temperature difference of +5.2 ± 2.3 °C obtained at the NGRIP (North Greenland Ice Core Project) site by the same method. Climate simulations performed with present-day ice sheet topography lead in general to a warming smaller than reconstructed, but sensitivity tests show that larger amplitudes (up to 5 °C) are produced in response to prescribed changes in sea ice extent and ice sheet topography.


2013 ◽  
Vol 9 (1) ◽  
pp. 353-366 ◽  
Author(s):  
A. Quiquet ◽  
C. Ritz ◽  
H. J. Punge ◽  
D. Salas y Mélia

Abstract. As pointed out by the forth assessment report of the Intergovernmental Panel on Climate Change, IPCC-AR4 (Meehl et al., 2007), the contribution of the two major ice sheets, Antarctica and Greenland, to global sea level rise, is a subject of key importance for the scientific community. By the end of the next century, a 3–5 °C warming is expected in Greenland. Similar temperatures in this region were reached during the last interglacial (LIG) period, 130–115 ka BP, due to a change in orbital configuration rather than to an anthropogenic forcing. Ice core evidence suggests that the Greenland ice sheet (GIS) survived this warm period, but great uncertainties remain about the total Greenland ice reduction during the LIG. Here we perform long-term simulations of the GIS using an improved ice sheet model. Both the methodologies chosen to reconstruct palaeoclimate and to calibrate the model are strongly based on proxy data. We suggest a relatively low contribution to LIG sea level rise from Greenland melting, ranging from 0.7 to 1.5 m of sea level equivalent, contrasting with previous studies. Our results suggest an important contribution of the Antarctic ice sheet to the LIG highstand.


2014 ◽  
Vol 119 (2) ◽  
pp. 631-645 ◽  
Author(s):  
Mark E. Inall ◽  
Tavi Murray ◽  
Finlo R. Cottier ◽  
Kilian Scharrer ◽  
Timothy J. Boyd ◽  
...  

1979 ◽  
Vol 23 (89) ◽  
pp. 193-207 ◽  
Author(s):  
Susan Herron ◽  
Hoar ◽  
Chester C. Langway

AbstractThe Camp Century, Greenland, ice core was recovered from a bore hole which extended 1 375 m from the surface of the Greenland ice sheet to the ice/sub-ice interface. The bottom 15.7 m of the core contain over 300 alternating bands of clear and debris-laden ice. The size of the included debris ranges from particles less than 2 μm in diameter to particle aggregates which are a maximum of 3 cm in diameter: the average debris concentration is 0.24ºº by weight. The debris size, concentration, and composition indicate that the debris originates from the till-like material directly below the debris-laden ice. The total gas concentration averages 51 ml/kg ice compared to the average of 101 ml/kg ice for the top 1 340 m. The gas composition of debris-bearing ice has apparently been modified by the oxidation of methane as reflected by traces of methane, high CO2 levels, and low O2 levels with respect to atmospheric air. Argon, which is not affected by the oxidation, shows an enrichment in samples with lower gas concentrations. Both the low gas concentrations in the debris-laden zone and the argon enrichment may be explained by the downward diffusion of gases from bubbly glacier ice into an originally bubble-free zone of refrozen debris-laden ice. Ice texture and ice-fabric analyses reveal extremely fine-grained ice and highly preferred crystal orientation in the lowermost 10 m of the core, indicating a zone of high deformation.


2021 ◽  
Author(s):  
Sonja Wahl ◽  
Alexandra Zuhr ◽  
Maria Hörhold ◽  
Anne-Katrine Faber ◽  
Hans Christian Steen-Larsen

<p>Post-depositional processes affect the stable water isotope signal of surface snow between precipitation events. Combined vapor-snow exchange processes and isotope diffusion influence the top layer of snow as well as buried layers below. This implies, that ice core isotope climate proxy records can not be interpreted as a precipitation weighted temperature signal alone.</p><p>Here we present to what extend surface sublimation can explain in-situ observed changes of the stable water isotope signal in the snow.<br>We use direct observations of the isotopic composition of the sublimation flux together with surface snow samples taken in the North-East of the Greenland Ice Sheet accumulation zone throughout the summer months of 2019 to demonstrate sublimation impacts.<br>We show that, contrary to the understanding of effectless layer-by-layer removal of snow, sublimation involves fractionation and therefore influences the isotopic composition of the snow. Complementary measurements of humidity as well as isotope fluxes constrain the local vapor snow exchange and allow for the quantification of post-depositional influences while the snow is exposed to the atmosphere.<br>This improved process understanding of the formation of the climate signal found in snow is important for merging climate modeling and ice core proxies. </p>


2016 ◽  
Vol 63 (237) ◽  
pp. 22-38 ◽  
Author(s):  
ANDREAS BORN

ABSTRACTThe full history of ice sheet and climate interactions is recorded in the vertical profiles of geochemical tracers in polar ice sheets. Numerical simulations of these archives promise great advances both in the interpretation of these reconstructions and the validation of the models themselves. However, fundamental mathematical shortcomings of existing models subject tracers to spurious diffusion, thwarting straightforward solutions. Here, I propose a new vertical discretization for ice-sheet models that eliminates numerical diffusion entirely. Vertical motion through the model mesh is avoided by mimicking the real-world flow of ice as a thinning of underlying layers. A new layer is added to the surface at equidistant time intervals, isochronally, thus identifying each layer uniquely by its time of deposition and age. This new approach is implemented for a two-dimensional section through the summit of the Greenland ice sheet. The ability to directly compare simulations of vertical ice cores with reconstructed data is used to find optimal model parameters from a large ensemble of simulations. It is shown that because this tuning method uses information from all times included in the ice core, it constrains ice-sheet sensitivity more robustly than a realistic reproduction of the modern ice-sheet surface.


2020 ◽  
Vol 61 (81) ◽  
pp. 84-91 ◽  
Author(s):  
T. M. Jordan ◽  
D. Z. Besson ◽  
I. Kravchenko ◽  
U. Latif ◽  
B. Madison ◽  
...  

AbstractThe Askaryan Radio Array (ARA) experiment at the South Pole is designed to detect high-energy neutrinos which, via in-ice interactions, produce coherent radiation at frequencies up to 1000 MHz. Characterization of ice birefringence, and its effect upon wave polarization, is proposed to enable range estimation to a neutrino interaction and hence aid in neutrino energy reconstruction. Using radio transmitter calibration sources, the ARA collaboration recently measured polarization-dependent time delay variations and reported significant time delays for trajectories perpendicular to ice flow, but not parallel. To explain these observations, and assess the capability for range estimation, we use fabric data from the SPICE ice core to model ice birefringence and construct a bounding radio propagation model that predicts polarization time delays. We compare the model with new data from December 2018 and demonstrate that the measurements are consistent with the prevailing horizontal crystallographic axis aligned near-perpendicular to ice flow. The study supports the notion that range estimation can be performed for near flow-perpendicular trajectories, although tighter constraints on fabric orientation are desirable for improving the accuracy of estimates.


Sign in / Sign up

Export Citation Format

Share Document