scholarly journals Impact of the ocean carbonate chemistry on living foraminiferal shell weight: Comment on “Carbonate ion concentration in glacial-age deep waters of the Caribbean Sea” by W. S. Broecker and E. Clark

2002 ◽  
Vol 3 (11) ◽  
pp. 1-7 ◽  
Author(s):  
Jelle Bijma ◽  
Bärbel Hönisch ◽  
Richard E. Zeebe
2014 ◽  
Vol 11 (8) ◽  
pp. 2295-2308 ◽  
Author(s):  
M. T. Horigome ◽  
P. Ziveri ◽  
M. Grelaud ◽  
K.-H. Baumann ◽  
G. Marino ◽  
...  

Abstract. Although ocean acidification is expected to impact (bio) calcification by decreasing the seawater carbonate ion concentration, [CO32−], there is evidence of nonuniform response of marine calcifying plankton to low seawater [CO32−]. This raises questions about the role of environmental factors other than acidification and about the complex physiological responses behind calcification. Here we investigate the synergistic effect of multiple environmental parameters, including seawater temperature, nutrient (nitrate and phosphate) availability, and carbonate chemistry on the coccolith calcite mass of the cosmopolitan coccolithophore Emiliania huxleyi, the most abundant species in the world ocean. We use a suite of surface (late Holocene) sediment samples from the South Atlantic and southwestern Indian Ocean taken from depths lying above the modern lysocline (with the exception of eight samples that are located at or below the lysocline). The coccolith calcite mass in our results presents a latitudinal distribution pattern that mimics the main oceanographic features, thereby pointing to the potential importance of seawater nutrient availability (phosphate and nitrate) and carbonate chemistry (pH and pCO2) in determining coccolith mass by affecting primary calcification and/or the geographic distribution of E. huxleyi morphotypes. Our study highlights the importance of evaluating the combined effect of several environmental stressors on calcifying organisms to project their physiological response(s) in a high-CO2 world and improve interpretation of paleorecords.


2015 ◽  
Vol 12 (1) ◽  
pp. 413-444 ◽  
Author(s):  
T. Yoshimura ◽  
A. Suzuki ◽  
N. Iwasaki

Abstract. Barium, boron and uranium element partitioning and oxygen and carbon isotope fractionation of high-Mg calcite skeletons of Octocorallia corals were investigated. The dissolved Ba concentration in seawater and the coral Ba/Ca ratio showed a clear positive correlation. The empirically derived barium partition coefficient is comparable to previous data for not only calcitic corals but also intermediate- to deep-water-dwelling scleractinian corals whose skeletons are composed of aragonite. Octocorallia corals are geologically important producers of biominerals, and they provide long-term records (up to hundreds of years) of environmental conditions in the deep ocean. Our data suggest that Ba/Ca ratios in Octocorallia corals may be a useful proxy for nutrients in intermediate and deep waters. The Ba/Ca ratio, a possible proxy for pH or carbonate ion concentration in seawater, showed the largest correlation with δ13C among the examined parameters. This result implies that the pH of the extracytoplasmic calcifying fluid (ECF) simultaneously influences δ18O, δ13C, and Ba/Ca by influencing the relative contributions of dissolved carbon sources in the ECF. Positive correlations of Ba/Ca with δ18 and δ13C suggest that δ18 and δ13C are enriched in light isotopes when conditions are less alkaline, suggesting a potential role of biological alkalinity pumping becomes more favorable with decreasing calcifying fluid pH. Substantial inter- and intra-specimen variations in Ba/Ca suggest that physicochemical factors do not exert a dominant systematic control on U incorporation.


2010 ◽  
Vol 7 (1) ◽  
pp. 247-255 ◽  
Author(s):  
F. Lombard ◽  
R. E. da Rocha ◽  
J. Bijma ◽  
J.-P. Gattuso

Abstract. The effect of carbonate ion concentration ([CO32−]) on calcification rates estimated from shell size and weight was investigated in the planktonic foraminifera Orbulina universa and Globigerinoides sacculifer. Experiments on G. sacculifer were conducted under two irradiance levels (35 and 335 μmol photons m−2 s−1). Calcification was ca. 30% lower under low light than under high light, irrespective of the [CO32−]. Both O. universa and G. sacculifer exhibited reduced final shell weight and calcification rate under low [CO32−]. For the [CO32−] expected at the end of the century, the calcification rates of these two species are projected to be 6 to 13% lower than the present conditions, while the final shell weights are reduced by 20 to 27% for O. universa and by 4 to 6% for G. sacculifer. These results indicate that ocean acidification would impact on calcite production by foraminifera and may decrease the calcite flux contribution from these organisms.


2009 ◽  
Vol 6 (5) ◽  
pp. 8589-8608 ◽  
Author(s):  
F. Lombard ◽  
R. E. da Rocha ◽  
J. Bijma ◽  
J.-P. Gattuso

Abstract. The effect of carbonate ion concentration ([CO32−]) on calcification rates estimated from shell size and weight was investigated in the planktonic foraminifera Orbulina universa and Globigerinoides sacculifer. Experiments on G. sacculifer were conducted under two irradiance levels (35 and 335 μmol photons m−2 s−1). Calcification was ca. 30% lower under low light than under high light, irrespective of the [CO32−]. Both O. universa and G. sacculifer exhibited reduced final shell weight and calcification rate under low [CO32−]. At the [CO32−] expected for the end of the century, the calcification rates of these two species are projected to be 6 to 13% lower than at present conditions, while the final shell weights are reduced by 20 to 27% for O. universa and by 4 to 6% for G. sacculifer. These results indicate that ocean acidification would impact calcite production by foraminifera and may decrease the calcite flux contribution from these organisms.


2013 ◽  
Vol 10 (10) ◽  
pp. 6185-6198 ◽  
Author(s):  
N. Keul ◽  
G. Langer ◽  
L. J. de Nooijer ◽  
J. Bijma

Abstract. About 30% of the anthropogenically released CO2 is taken up by the oceans; such uptake causes surface ocean pH to decrease and is commonly referred to as ocean acidification (OA). Foraminifera are one of the most abundant groups of marine calcifiers, estimated to precipitate ca. 50 % of biogenic calcium carbonate in the open oceans. We have compiled the state of the art literature on OA effects on foraminifera, because the majority of OA research on this group was published within the last three years. Disparate responses of this important group of marine calcifiers to OA were reported, highlighting the importance of a process-based understanding of OA effects on foraminifera. We cultured the benthic foraminifer Ammonia sp. under a range of carbonate chemistry manipulation treatments to identify the parameter of the carbonate system causing the observed effects. This parameter identification is the first step towards a process-based understanding. We argue that [CO32−] is the parameter affecting foraminiferal size-normalized weights (SNWs) and growth rates. Based on the presented data, we can confirm the strong potential of Ammonia sp. foraminiferal SNW as a [CO32−] proxy.


2021 ◽  
Vol 50 (1) ◽  
pp. 171-178
Author(s):  
Juan Cortés ◽  
Néstor Hernando ◽  
Maryela Bolaño

The presence of parasitic crustaceans of the order Tantulocarida in the Caribbean Sea is reported for the first time. The organisms were found parasitizing a Cumacea of the genus Eudorellla and two Tanaidaceans of the genus Tanaella, between 2,420 and 2,786 m deep. The organisms came from the benthic community samplings made in Ocean Caribbean ecoregion (COC), in a hydrocarbon exploration area. The organisms were analyzed in the laboratory with an optical microscope and stereoscope; photographs were taken, and diagrams were made to describe the main morphological and morphometric characters. Four tantulocaridans were found, of which one was male and the other sexual females. Due to host-parasite specificity and the lack of reports in the Caribbean Sea, it is highly likely that these collected species are new to science.


2010 ◽  
Vol 213 (23) ◽  
pp. 3961-3971 ◽  
Author(s):  
J. Casey ◽  
J. Garner ◽  
S. Garner ◽  
A. S. Williard

2010 ◽  
Vol 7 (2) ◽  
pp. 1707-1726 ◽  
Author(s):  
C. J. M. Hoppe ◽  
G. Langer ◽  
S. D. Rokitta ◽  
D. A. Wolf-Gladrow ◽  
B. Rost

Abstract. Seawater carbonate chemistry is typically calculated from two measured parameters. Depending on the choice of these input parameters, discrepancies in calculated pCO2 have been recognized by marine chemists, but the significance of this phenomenon for CO2 perturbation experiments has so far not been determined. To mimic different pCO2 scenarios, two common perturbation methods for seawater carbonate chemistry (changing either DIC or TA) were applied using state-of-the-art protocols and equipment. The carbonate system was over-constrained by measuring DIC, TA, pH, and pCO2. Calculated pCO2 matched measured pCO2 if pH and TA or pH and DIC were chosen as input parameters, whereas pCO2 calculated from TA and DIC was considerably lower than measured values. This has important implications for CO2 perturbation experiments. First, calculated pCO2 values may not be comparable if different input parameters were used. Second, responses of organisms to acidification may be overestimated when using TA and DIC for calculations. This is especially troublesome for experiments with calcifiers, as carbonate ion concentration and thus calcite or aragonite saturation state are overestimated. We suggest refraining from measuring TA and DIC only and rather include pH as input parameter for carbonate chemistry calculations.


Sign in / Sign up

Export Citation Format

Share Document