scholarly journals Future climate impacts of direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and long-lived greenhouse gases

2007 ◽  
Vol 112 (D14) ◽  
Author(s):  
Wei-Ting Chen ◽  
Hong Liao ◽  
John H. Seinfeld
2013 ◽  
Vol 6 (2) ◽  
pp. 3349-3380 ◽  
Author(s):  
P. B. Holden ◽  
N. R. Edwards ◽  
P. H. Garthwaite ◽  
K. Fraedrich ◽  
F. Lunkeit ◽  
...  

Abstract. Many applications in the evaluation of climate impacts and environmental policy require detailed spatio-temporal projections of future climate. To capture feedbacks from impacted natural or socio-economic systems requires interactive two-way coupling but this is generally computationally infeasible with even moderately complex general circulation models (GCMs). Dimension reduction using emulation is one solution to this problem, demonstrated here with the GCM PLASIM-ENTS. Our approach generates temporally evolving spatial patterns of climate variables, considering multiple modes of variability in order to capture non-linear feedbacks. The emulator provides a 188-member ensemble of decadally and spatially resolved (~ 5° resolution) seasonal climate data in response to an arbitrary future CO2 concentration and radiative forcing scenario. We present the PLASIM-ENTS coupled model, the construction of its emulator from an ensemble of transient future simulations, an application of the emulator methodology to produce heating and cooling degree-day projections, and the validation of the results against empirical data and higher-complexity models. We also demonstrate the application to estimates of sea-level rise and associated uncertainty.


2014 ◽  
Vol 14 (11) ◽  
pp. 5513-5527 ◽  
Author(s):  
C. L. Heald ◽  
D. A. Ridley ◽  
J. H. Kroll ◽  
S. R. H. Barrett ◽  
K. E. Cady-Pereira ◽  
...  

Abstract. The direct radiative effect (DRE) of aerosols, which is the instantaneous radiative impact of all atmospheric particles on the Earth's energy balance, is sometimes confused with the direct radiative forcing (DRF), which is the change in DRE from pre-industrial to present-day (not including climate feedbacks). In this study we couple a global chemical transport model (GEOS-Chem) with a radiative transfer model (RRTMG) to contrast these concepts. We estimate a global mean all-sky aerosol DRF of −0.36 Wm−2 and a DRE of −1.83 Wm−2 for 2010. Therefore, natural sources of aerosol (here including fire) affect the global energy balance over four times more than do present-day anthropogenic aerosols. If global anthropogenic emissions of aerosols and their precursors continue to decline as projected in recent scenarios due to effective pollution emission controls, the DRF will shrink (−0.22 Wm−2 for 2100). Secondary metrics, like DRE, that quantify temporal changes in both natural and anthropogenic aerosol burdens are therefore needed to quantify the total effect of aerosols on climate.


2020 ◽  
Author(s):  
Alcide Zhao ◽  
David Stevenson ◽  
Massimi Bollasina

<p>It is crucial to reduce uncertainties in our understanding of the climate impacts of short‐lived climate forcers, in the context that their emissions/concentrations are anticipated to decrease significantly in the coming decades worldwide. Using the Community Earth System Model (CESM1), we performed time‐slice experiments to investigate the effective radiative forcing (ERF) and climate respons to 1970–2010 changes in well‐mixed greenhouse gases (GHGs), anthropogenic aerosols, and tropospheric and stratospheric ozone. Once the present‐day climate has fully responded to 1970–2010 changes in all forcings, both the global mean temperature and precipitation responses are twice as large as the transient ones, with wet regions getting wetter and dry regions drier. The temperature response per unit ERF for short‐lived species varies considerably across many factors including forcing agents and the magnitudes and locations of emission changes. This suggests that the ERF should be used carefully to interpret the climate impacts of short‐lived climate forcers. Changes in both the mean and the probability distribution of global mean daily precipitation are driven mainly by GHG increases. However, changes in the frequency distributions of regional mean daily precipitation are more strongly influenced by changes in aerosols, rather than GHGs. This is particularly true over Asia and Europe where aerosol changes have significant impacts on the frequency of heavy‐to‐extreme precipitation. Our results may help guide more reliable near‐future climate projections and allow us to manage climate risks more effectively.</p>


2006 ◽  
Vol 6 (3) ◽  
pp. 5095-5136 ◽  
Author(s):  
M. Schulz ◽  
C. Textor ◽  
S. Kinne ◽  
Y. Balkanski ◽  
S. Bauer ◽  
...  

Abstract. Nine different global models with detailed aerosol modules have independently produced instantaneous direct radiative forcing due to anthropogenic aerosols. The anthropogenic impact is derived from the difference of two model simulations with identically prescribed aerosol emissions, one for present-day and one for pre-industrial conditions. The difference in the energy budget at the top of the atmosphere (ToA) yields a new harmonized estimate for the aerosol direct radiative forcing (RF) under all-sky conditions. On a global annual basis RF is –0.2 Wm-2, with a standard deviation of ±0.2 Wm-2. Anthropogenic nitrate and dust are not included in this estimate. No model shows a significant positive all-sky RF. The corresponding clear-sky RF is –0.6 Wm-2. The cloud-sky RF was derived based on all-sky and clear-sky RF and modelled cloud cover. It was significantly different from zero and ranged between –0.16 and +0.34 Wm-2. A sensitivity analysis shows that the total aerosol RF is influenced by considerable diversity in simulated residence times, mass extinction coefficients and most importantly forcing efficiencies (forcing per unit optical depth). Forcing efficiency differences among models explain most of the variability, mainly because all-sky forcing estimates require proper representation of cloud fields and the correct relative altitude placement between absorbing aerosol and clouds. The analysis of the sulphate RF shows that differences in sulphate residence times are compensated by opposite mass extinction coefficients. This is explained by more sulphate particle humidity growth and thus higher extinction in models with short-lived sulphate present at lower altitude and vice versa. Solar absorption within the atmospheric column is estimated at +0.85 Wm-2. The local annual average maxima of atmospheric forcing exceed +5 Wm-2 confirming the regional character of aerosol impacts on climate. The annual average surface forcing is –1.03 Wm-2.


2011 ◽  
Vol 11 (2) ◽  
pp. 799-816 ◽  
Author(s):  
G. S. Jones ◽  
N. Christidis ◽  
P. A. Stott

Abstract. Past research has shown that the dominant influence on recent global climate changes is from anthropogenic greenhouse gas increases with implications for future increases in global temperatures. One mitigation proposal is to reduce black carbon aerosol emissions. How much warming can be offset by controlling black carbon is unclear, especially as its influence on past climate has not been previously unambiguously detected. In this study observations of near-surface warming over the last century are compared with simulations using a climate model, HadGEM1. In the simulations black carbon, from fossil fuel and bio-fuel sources (fBC), produces a positive radiative forcing of about +0.25 Wm−2 over the 20th century, compared with +2.52 Wm−2 for well mixed greenhouse gases. A simulated warming of global mean near-surface temperatures over the twentieth century from fBC of 0.14 ± 0.1 K compares with 1.06 ± 0.07 K from greenhouse gases, −0.58 ± 0.10 K from anthropogenic aerosols, ozone and land use changes and 0.09 ± 0.09 K from natural influences. Using a detection and attribution methodology, the observed warming since 1900 has detectable influences from anthropogenic and natural factors. Fossil fuel and bio-fuel black carbon is found to have a detectable contribution to the warming over the last 50 yr of the 20th century, although the results are sensitive to the period being examined as fBC is not detected for the later fifty year period ending in 2006. The attributed warming of fBC was found to be consistent with the warming from fBC unscaled by the detection analysis. This study suggests that there is a possible significant influence from fBC on global temperatures, but its influence is small compared to that from greenhouse gas emissions.


2009 ◽  
Vol 9 (2) ◽  
pp. 6571-6595 ◽  
Author(s):  
C. Wang ◽  
G.-R. Jeong ◽  
N. Mahowald

Abstract. Particulate solar absorption is a critical factor in determining the value and even sign of the direct radiative forcing of aerosols. The heating to the atmosphere and cooling to the Earth's surface caused by this absorption are hypothesized to have significant climate impacts. We find that anthropogenic aerosols play an important role around the globe in total particulate absorption of solar radiation. The global-average anthropogenic fraction in total aerosol absorbing optical depth exceeds 65% in all seasons. Combining the potentially highest dust absorption with the lowest anthropogenic absorption within our model range, this fraction would still exceed 47% in most seasons except for boreal spring (36%) when dust abundance reaches its peak. Nevertheless, dust aerosol is still a critical absorbing constituent over places including North Africa, the entire tropical Atlantic, and during boreal spring in most part of Eurasian continent. The equality in absorbing solar radiation of dust and anthropogenic aerosols appears to be particularly important over Indian subcontinent and nearby regions as well as North Africa.


Sign in / Sign up

Export Citation Format

Share Document