scholarly journals Contrasting the direct radiative effect and direct radiative forcing of aerosols

2014 ◽  
Vol 14 (11) ◽  
pp. 5513-5527 ◽  
Author(s):  
C. L. Heald ◽  
D. A. Ridley ◽  
J. H. Kroll ◽  
S. R. H. Barrett ◽  
K. E. Cady-Pereira ◽  
...  

Abstract. The direct radiative effect (DRE) of aerosols, which is the instantaneous radiative impact of all atmospheric particles on the Earth's energy balance, is sometimes confused with the direct radiative forcing (DRF), which is the change in DRE from pre-industrial to present-day (not including climate feedbacks). In this study we couple a global chemical transport model (GEOS-Chem) with a radiative transfer model (RRTMG) to contrast these concepts. We estimate a global mean all-sky aerosol DRF of −0.36 Wm−2 and a DRE of −1.83 Wm−2 for 2010. Therefore, natural sources of aerosol (here including fire) affect the global energy balance over four times more than do present-day anthropogenic aerosols. If global anthropogenic emissions of aerosols and their precursors continue to decline as projected in recent scenarios due to effective pollution emission controls, the DRF will shrink (−0.22 Wm−2 for 2100). Secondary metrics, like DRE, that quantify temporal changes in both natural and anthropogenic aerosol burdens are therefore needed to quantify the total effect of aerosols on climate.

2013 ◽  
Vol 13 (12) ◽  
pp. 32925-32961 ◽  
Author(s):  
C. L. Heald ◽  
D. A. Ridley ◽  
J. H. Kroll ◽  
S. R. H. Barrett ◽  
K. E. Cady-Pereira ◽  
...  

Abstract. The direct radiative effect (DRE) of aerosols, which is the instantaneous radiative impact of all atmospheric particles on the Earth's energy balance, is often confused with the direct radiative forcing (DRF), which is the change in DRE from pre-industrial to present-day (not including climate feedbacks). We use here a coupled global chemical transport model (GEOS-Chem) and radiative transfer model (RRTMG) to contrast these concepts. We estimate a global mean all-sky aerosol DRF of −0.36 Wm−2 and a DRE of −1.83 Wm−2 for 2010. Therefore, natural sources of aerosol (here including fire) affect the global energy balance over four times more than do present-day anthropogenic aerosols. If global anthropogenic emissions of aerosols and their precursors continue to decline as projected in recent scenarios due to effective pollution emission controls, the DRF will shrink (−0.22 Wm−2 for 2100), while the climate feedbacks on aerosols under rising global temperatures will likely amplify. Secondary metrics, like DRE, that quantify temporal changes in both natural and anthropogenic aerosol burdens are therefore needed to quantify the total effect of aerosols on climate.


2019 ◽  
Author(s):  
Marianne T. Lund ◽  
Gunnar Myhre ◽  
Bjørn H. Samset

Abstract. Emissions of anthropogenic aerosols are expected to change drastically over the coming decades, with potentially significant climate implications. Using the most recent generation of harmonized emission scenarios, the Shared Socioeconomic Pathways (SSPs) as input to a global chemistry transport and radiative transfer model, we provide estimates of the projected future global and regional burdens and radiative forcing of anthropogenic aerosols under three different levels of air pollution control: strong (SSP1), medium (SSP2) and weak (SSP3). We find that the broader range of future air pollution emission trajectories spanned by the SSPs compared to previous scenarios translates into total aerosol forcing estimates in 2100 relative to 1750 ranging from −0.04 W m−2 in SSP1-1.9 to −0.51 W m−2 in SSP3-7.0. Compared to our 1750–2015 estimate of −0.61 W m−2, this shows that depending on the success of air pollution policies over the coming decades, aerosol radiative forcing may weaken by nearly 95 % or remain close to the pre-industrial to present-day level. In all three scenarios there is a positive forcing in 2100 relative to 2015, from 0.51 W m−2 in SSP1-1.9 to 0.04 W m−2 in SSP3-7.0. Results also demonstrate significant differences across regions and scenarios, especially in South Asia and Africa. While rapid weakening of the negative aerosol forcing following effective air quality policies will unmask more of the greenhouse gas-induced global warming, slow progress on mitigating air pollution will significantly enhance the atmospheric aerosol levels and risk to human health. In either case, the resulting impacts on regional and global climate can be significant.


2013 ◽  
Vol 13 (8) ◽  
pp. 21125-21157 ◽  
Author(s):  
M. M. Fry ◽  
M. D. Schwarzkopf ◽  
Z. Adelman ◽  
J. J. West

Abstract. Non-methane volatile organic compounds (NMVOCs) influence air quality and global climate change through their effects on secondary air pollutants and climate forcers. Here we simulate the air quality and radiative forcing (RF) impacts of changes in ozone, methane, and sulfate from halving anthropogenic NMVOC emissions globally and from 10 regions individually, using a global chemical transport model and a standalone radiative transfer model. Halving global NMVOC emissions decreases global annual average tropospheric methane and ozone by 36.6 ppbv and 3.3 Tg, respectively, and surface ozone by 0.67 ppbv. All regional reductions slow the production of PAN, resulting in regional to intercontinental PAN decreases and regional NOx increases. These NOx increases drive tropospheric ozone increases nearby or downwind of source regions in the Southern Hemisphere (South America, Southeast Asia, Africa, and Australia). Some regions' NMVOC emissions contribute importantly to air pollution in other regions, such as East Asia, Middle East, and Europe, whose impact on US surface ozone is 43%, 34%, and 34% of North America's impact. Global and regional NMVOC reductions produce widespread negative net RFs (cooling) across both hemispheres from tropospheric ozone and methane decreases, and regional warming and cooling from changes in tropospheric ozone and sulfate (via several oxidation pathways). The total global net RF for NMVOCs is estimated as 0.0277 W m−2 (~1.8% of CO2 RF since the preindustrial). The 100 yr and 20 yr global warming potentials (GWP100, GWP20) are 2.36 and 5.83 for the global reduction, and 0.079 to 6.05 and −1.13 to 18.9 among the 10 regions. The NMVOC RF and GWP estimates are generally lower than previously modeled estimates, due to differences among models in ozone, methane, and sulfate sensitivities, and the climate forcings included in each estimate. Accounting for a~fuller set of RF contributions may change the relative magnitude of each region's impacts. The large variability in the RF and GWP of NMVOCs among regions suggest that regionally-specific metrics may be necessary to include NMVOCs in multi-gas climate trading schemes.


2012 ◽  
Vol 12 (1) ◽  
pp. 193-240 ◽  
Author(s):  
X. Ma ◽  
F. Yu ◽  
G. Luo

Abstract. Aerosol direct radiative forcing (DRF) plays an important role in global climate change but has a large uncertainty. Here we investigate aerosol DRF with GEOS-Chem-APM, a recently developed global aerosol microphysical model that is designed to capture key particle properties (size, composition, coating of primary particles by volatile species, etc.). The model, with comprehensive chemistry, microphysics and up-to-date emission inventories, is driven by assimilated meteorology, which is presumably more realistic compared to the model-predicted meteorology. For this study, the model is extended by incorporating a radiation transfer model. Optical properties are calculated using Mie theory, where the core-shell configuration could be treated with the refractive indices from the recently updated values available in the literature. The surface albedo is taken from MODIS satellite retrievals for the simulation year, in which the data set for the 8-day mean at 1 km resolution for 7 wavebands is provided. We derive the total and anthropogenic aerosol DRF, mainly focus on the results of anthropogenic aerosols, and then compare with those values reported in previous studies. In addition, we examine the anthropogenic aerosol DRF's dependence on several key factors, including the particle size of black carbon (BC) and primary organic carbon (POC), the density of BC and the mixing state. Our studies show that the anthropogenic aerosol DRF at top of atmosphere (TOA) for all sky is −0.41 W m−2. However, the sensitivity experiments suggest that the magnitude could vary from −0.08 W m−2 to −0.61 W m−2 depending on assumptions regarding the mixing state, size and density of particles.


2014 ◽  
Vol 14 (2) ◽  
pp. 523-535 ◽  
Author(s):  
M. M. Fry ◽  
M. D. Schwarzkopf ◽  
Z. Adelman ◽  
J. J. West

Abstract. Non-methane volatile organic compounds (NMVOCs) influence air quality and global climate change through their effects on secondary air pollutants and climate forcers. Here we simulate the air quality and radiative forcing (RF) impacts of changes in ozone, methane, and sulfate from halving anthropogenic NMVOC emissions globally and from 10 regions individually, using a global chemical transport model and a standalone radiative transfer model. Halving global NMVOC emissions decreases global annual average tropospheric methane and ozone by 36.6 ppbv and 3.3 Tg, respectively, and surface ozone by 0.67 ppbv. All regional reductions slow the production of peroxyacetyl nitrate (PAN), resulting in regional to intercontinental PAN decreases and regional NOx increases. These NOx increases drive tropospheric ozone increases nearby or downwind of source regions in the Southern Hemisphere (South America, Southeast Asia, Africa, and Australia). Some regions' NMVOC emissions contribute importantly to air pollution in other regions, such as East Asia, the Middle East, and Europe, whose impact on US surface ozone is 43%, 34%, and 34% of North America's impact. Global and regional NMVOC reductions produce widespread negative net RFs (cooling) across both hemispheres from tropospheric ozone and methane decreases, and regional warming and cooling from changes in tropospheric ozone and sulfate (via several oxidation pathways). The 100 yr and 20 yr global warming potentials (GWP100, GWP20) are 2.36 and 5.83 for the global reduction, and 0.079 to 6.05 and −1.13 to 18.9 among the 10 regions. The NMVOC RF and GWP estimates are generally lower than previously modeled estimates, due to the greater NMVOC/NOx emissions ratios simulated, which result in less sensitivity to NMVOC emissions changes and smaller global O3 burden responses, in addition to differences in the representation of NMVOCs and oxidation chemistry among models. Accounting for a fuller set of RF contributions may change the relative magnitude of each region's impacts. The large variability in the RF and GWP of NMVOCs among regions suggest that regionally specific metrics may be necessary to include NMVOCs in multi-gas climate trading schemes.


2012 ◽  
Vol 12 (12) ◽  
pp. 5563-5581 ◽  
Author(s):  
X. Ma ◽  
F. Yu ◽  
G. Luo

Abstract. Aerosol direct radiative forcing (DRF) plays an important role in global climate change but has a large uncertainty. Here we investigate aerosol DRF with GEOS-Chem-APM, a recently developed global aerosol microphysical model that is designed to capture key particle properties (size, composition, coating of primary particles by volatile species, etc.). The model, with comprehensive chemistry, microphysics and up-to-date emission inventories, is driven by assimilated meteorology, which is presumably more realistic compared to the model-predicted meteorology. For this study, the model is extended by incorporating a radiation transfer model. Optical properties are calculated using Mie theory, where the core-shell configuration could be treated with the refractive indices from the recently updated values available in the literature. The surface albedo is taken from MODIS satellite retrievals for the simulation year, in which the data set for the 8-day mean at 0.05° (5600 m) resolution for 7 wavebands is provided. We derive the total and anthropogenic aerosol DRF, mainly focus on the results of anthropogenic aerosols, and then compare with those values reported in previous studies. In addition, we examine the anthropogenic aerosol DRF's dependence on several key factors, including the particle size of black carbon (BC) and primary organic carbon (POC), the density of BC and the mixing state. Our studies show that the anthropogenic aerosol DRF at top of atmosphere (TOA) for all sky is −0.41 W m−2. However, the sensitivity experiments suggest that the magnitude could vary from −0.08 W m−2 to −0.61 W m−2, depending on assumptions regarding the mixing state, size and density of particles.


2019 ◽  
Vol 19 (22) ◽  
pp. 13827-13839 ◽  
Author(s):  
Marianne T. Lund ◽  
Gunnar Myhre ◽  
Bjørn H. Samset

Abstract. Emissions of anthropogenic aerosols are expected to change drastically over the coming decades, with potentially significant climate implications. Using the most recent generation of harmonized emission scenarios, the Shared Socioeconomic Pathways (SSPs) as input to a global chemistry transport and radiative transfer model, we provide estimates of the projected future global and regional burdens and radiative forcing of anthropogenic aerosols under three contrasting pathways for air pollution levels: SSP1-1.9, SSP2-4.5 and SSP3-7.0. We find that the broader range of future air pollution emission trajectories spanned by the SSPs compared to previous scenarios translates into total aerosol forcing estimates in 2100 relative to 1750 ranging from −0.04 in SSP1-1.9 to −0.51 W m−2 in SSP3-7.0. Compared to our 1750–2015 estimate of −0.55 W m−2, this shows that, depending on the success of air pollution policies and socioeconomic development over the coming decades, aerosol radiative forcing may weaken by nearly 95 % or remain close to the preindustrial to present-day level. In all three scenarios there is a positive forcing in 2100 relative to 2015, from 0.51 in SSP1-1.9 to 0.04 W m−2 in SSP3-7.0. Results also demonstrate significant differences across regions and scenarios, especially in South Asia and Africa. While rapid weakening of the negative aerosol forcing following effective air quality policies will unmask more of the greenhouse-gas-induced global warming, slow progress on mitigating air pollution will significantly enhance the atmospheric aerosol levels and risk to human health in these regions. In either case, the resulting impacts on regional and global climate can be significant.


2016 ◽  
Vol 9 (8) ◽  
pp. 2741-2754 ◽  
Author(s):  
Elham Baranizadeh ◽  
Benjamin N. Murphy ◽  
Jan Julin ◽  
Saeed Falahat ◽  
Carly L. Reddington ◽  
...  

Abstract. The particle formation scheme within PMCAMx-UF, a three-dimensional chemical transport model, was updated with particle formation rates for the ternary H2SO4–NH3–H2O pathway simulated by the Atmospheric Cluster Dynamics Code (ACDC) using quantum chemical input data. The model was applied over Europe for May 2008, during which the EUCAARI-LONGREX (European Aerosol Cloud Climate and Air Quality Interactions–Long-Range Experiment) campaign was carried out, providing aircraft vertical profiles of aerosol number concentrations. The updated model reproduces the observed number concentrations of particles larger than 4 nm within 1 order of magnitude throughout the atmospheric column. This agreement is encouraging considering the fact that no semi-empirical fitting was needed to obtain realistic particle formation rates. The cloud adjustment scheme for modifying the photolysis rate profiles within PMCAMx-UF was also updated with the TUV (Tropospheric Ultraviolet and Visible) radiative-transfer model. Results show that, although the effect of the new cloud adjustment scheme on total number concentrations is small, enhanced new-particle formation is predicted near cloudy regions. This is due to the enhanced radiation above and in the vicinity of the clouds, which in turn leads to higher production of sulfuric acid. The sensitivity of the results to including emissions from natural sources is also discussed.


2011 ◽  
Vol 11 (8) ◽  
pp. 24085-24125 ◽  
Author(s):  
E. M. Leibensperger ◽  
L. J. Mickley ◽  
D. J. Jacob ◽  
W.-T. Chen ◽  
J. H. Seinfeld ◽  
...  

Abstract. We use the GEOS-Chem chemical transport model combined with the GISS general circulation model to calculate the aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950–2050 period, based on historical emission inventories and future projections from the IPCC A1B scenario. The aerosol simulation is evaluated with observed spatial distributions and 1980–2010 trends of aerosol concentrations and wet deposition in the contiguous US. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that it peaked in 1970–1990, with values over the eastern US (east of 100° W) of −2.0 W m−2 for direct forcing including contributions from sulfate (−2.0 W m−2), nitrate (−0.2 W m−2), organic carbon (−0.2 W m−2), and black carbon (+0.4 W m−2). The aerosol indirect effect is of comparable magnitude to the direct forcing. We find that the forcing declined sharply from 1990 to 2010 (by 0.8 W m−2 direct and 1.0 W m−2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60 % from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources may have already been realized by 2010, however some additional warming is expected through 2020. The small positive radiative forcing from US BC emissions (+0.3 W m−2 over the eastern US in 2010) suggests that an emission control strategy focused on BC would have only limited climate benefit.


2021 ◽  
Author(s):  
Filippo Calì Quaglia ◽  
Daniela Meloni ◽  
Alcide Giorgio di Sarra ◽  
Tatiana Di Iorio ◽  
Virginia Ciardini ◽  
...  

<p>Extended and intense wildfires occurred in Northern Canada and, unexpectedly, on the Greenlandic West coast during summer 2017. The thick smoke plume emitted into the atmosphere was transported to the high Arctic, producing one of the largest impacts ever observed in the region. Evidence of Canadian and Greenlandic wildfires was recorded at the Thule High Arctic Atmospheric Observatory (THAAO, 76.5°N, 68.8°W, www.thuleatmos-it.it) by a suite of instruments managed by ENEA, INGV, Univ. of Florence, and NCAR. Ground-based observations of the radiation budget have allowed quantification of the surface radiative forcing at THAAO. </p><p>Excess biomass burning chemical tracers such as CO, HCN, H2CO, C2H6, and NH3 were  measured in the air column above Thule starting from August 19 until August 23. The aerosol optical depth (AOD) reached a peak value of about 0.9 on August 21, while an enhancement of wildfire compounds was  detected in PM10. The measured shortwave radiative forcing was -36.7 W/m2 at 78° solar zenith angle (SZA) for AOD=0.626.</p><p>MODTRAN6.0 radiative transfer model (Berk et al., 2014) was used to estimate the aerosol radiative effect and the heating rate profiles at 78° SZA. Measured temperature profiles, integrated water vapour, surface albedo, spectral AOD and aerosol extinction profiles from CALIOP onboard CALIPSO were used as model input. The peak  aerosol heating rate (+0.5 K/day) was  reached within the aerosol layer between 8 and 12 km, while the maximum radiative effect (-45.4 W/m2) is found at 3 km, below the largest aerosol layer.</p><p>The regional impact of the event that occurred on August 21 was investigated using a combination of atmospheric radiative transfer modelling with measurements of AOD and ground surface albedo from MODIS. The aerosol properties used in the radiative transfer model were constrained by in situ measurements from THAAO. Albedo data over the ocean have been obtained from Jin et al. (2004). Backward trajectories produced through HYSPLIT simulations (Stein et al., 2015) were also employed to trace biomass burning plumes.</p><p>The radiative forcing efficiency (RFE) over land and ocean was derived, finding values spanning from -3 W/m2 to -132 W/m2, depending on surface albedo and solar zenith angle. The fire plume covered a vast portion of the Arctic, with large values of the daily shortwave RF (< -50 W/m2) lasting for a few days. This large amount of aerosol is expected to influence cloud properties in the Arctic, producing significant indirect radiative effects.</p>


Sign in / Sign up

Export Citation Format

Share Document