scholarly journals Estimating geocenter variations from a combination of GRACE and ocean model output

Author(s):  
Sean Swenson ◽  
Don Chambers ◽  
John Wahr
2019 ◽  
Vol 36 (8) ◽  
pp. 1547-1561
Author(s):  
Elizabeth M. Douglass ◽  
Andrea C. Mask

AbstractAs numerical modeling advances, quantitative metrics are necessary to determine whether the model output accurately represents the observed ocean. Here, a metric is developed based on whether a model places oceanic fronts in the proper location. Fronts are observed and assessed directly from along-track satellite altimetry. Numerical model output is then interpolated to the locations of the along-track data, and fronts are detected in the model output. Scores are determined from the percentage of observed fronts correctly simulated in the model and from the percentage of modeled fronts confirmed by observations. These scores depend on certain parameters such as the minimum size of a front, which will be shown to be geographically dependent. An analysis of two models, the Hybrid Coordinate Ocean Model (HYCOM) and the Navy Coastal Ocean Model (NCOM), is presented as an example of how this metric might be applied and interpreted. In this example, scores are found to be relatively stable in time, but strongly dependent on the mesoscale variability in the region of interest. In all cases, the metric indicates that there are more observed fronts not found in the models than there are modeled fronts missing from observations. In addition to the score itself, the analysis demonstrates that modeled fronts have smaller amplitude and are less steep than observed fronts.


2019 ◽  
Vol 135 ◽  
pp. 1-13 ◽  
Author(s):  
Matthew A. Chamberlain ◽  
Richard J. Matear ◽  
Mark Holzer ◽  
Daohua Bi ◽  
Simon J. Marsland

2007 ◽  
Vol 64 (11) ◽  
pp. 4053-4068 ◽  
Author(s):  
Cegeon J. Chan ◽  
R. Alan Plumb ◽  
Ivana Cerovecki

Abstract The authors investigate the dynamics of zonal jets in a semihemisphere zonally reentrant ocean model. The forcings imposed in the model are an idealized atmospheric wind stress and relaxation to a latitudinal temperature profile held constant in time. While there are striking similarities to the observed atmospheric annular modes, where the leading mode of variability is associated with the primary zonal jet’s meridional undulation, secondary (weaker) jets emerge and systematically migrate equatorward. The model output suggests the following mechanism for the equatorward migration: while the eddy momentum fluxes sustain the jets, the eddy heat fluxes have a poleward bias causing an anomalous residual circulation with poleward (equatorward) flow on the poleward (equatorward) flanks. By conservation of mass, there must be a rising residual flow at the jet. From the thermodynamics equation, the greatest cooling occurs at the jet core, thus creating a tendency to reduce the baroclinicity on the poleward flank, while enhancing it on the equatorward flank. Consequently, the baroclinic zone shifts, perpetuating the jet migration.


2013 ◽  
Vol 10 (81) ◽  
pp. 20120979 ◽  
Author(s):  
Nathan F. Putman ◽  
Ruoying He

Ocean circulation models are widely used to simulate organism transport in the open sea, where challenges of directly tracking organisms across vast spatial and temporal scales are daunting. Many recent studies tout the use of ‘high-resolution’ models, which are forced with atmospheric data on the scale of several hours and integrated with a time step of several minutes or seconds. However, in many cases, the model's outputs that are used to simulate organism movement have been averaged to considerably coarser resolutions (e.g. monthly mean velocity fields). To examine the sensitivity of tracking results to ocean circulation model output resolution, we took the native model output of one of the most sophisticated ocean circulation models available, the Global Hybrid Coordinate Ocean Model, and averaged it to commonly implemented spatial and temporal resolutions in studies of basin-scale dispersal. Comparisons between simulated particle trajectories and in situ near-surface drifter trajectories indicated that ‘over averaging’ model output yields predictions inconsistent with observations. Further analyses focused on the dispersal of juvenile sea turtles indicate that very different inferences regarding the pelagic ecology of these animals are obtained depending on the resolution of model output. We conclude that physical processes occurring at the scale of days and tens of kilometres should be preserved in ocean circulation model output to realistically depict the movement marine organisms and the resulting ecological and evolutionary processes.


2021 ◽  
Author(s):  
Schubert Rene

With this script, the Meridional Overturning Circulation (MOC) can be computed from NEMO ocean-model output for the whole globe or the Atlantic (AMOC), Indic (IMOC) and Pacific (PMOC) subbasins. The MOC is computable in z- and sigma coordinates. Moreover, for nested configurations, it is possible to combine data from both host and nest grids. Finally, it is possible to take into account of that the ORCA model grid is curvilinear north of 20°N: it is possible to compute the northward velocity component from the velocity field in x- and y- directions and to sum up the meridional flux over latitudional bands instead of in x-direction. When both steps are applied, the resulting MOC shows however strong variability in meridional direction. It needs to be clarified, whether this is realistic or not. The software is provided in the form of the jupyter notebook "MOC.ipynb" which includes more informations on the possibilites of the computations and an extensive appendix section with comparisons to computations with cdftools, as well as with details on the computation of the MOC including nest data and taking the curvilinearity of the grid into account. Necessary python modules are listed at the beginning of the document.


2019 ◽  
Vol 79 (2) ◽  
pp. 109-126
Author(s):  
D Tian ◽  
J Su ◽  
F Zhou ◽  
B Mayer ◽  
D Sein ◽  
...  

2020 ◽  
Author(s):  
Minhaaj Rehman ◽  
John Anthony Johnson

The NEO-IPIP-300 is a 300-item version scale of freely available personality tests based on the OCEAN Model of 30 distinctive personality traits. The scale measures human personality preferences and groups them into five distinct factors, namely Openness to Experience, Conscientiousness, Extraversion, Agreeableness, and Neuroticism. The scale has been translated into many languages before, but there was no translation and norms available for the Urdu language.Paper reports the translation, creation of web version, data collection (N=869), and reliability of Urdu version of NEO-IPIP-300. We also did a CFA Analysis and Measurement Invariance test as part of the paper. Full measurement invariance was met for the full model, and partial measurement invariance was met for neuroticism (metric and scalar) and extraversion (metric). In general, all models fit well and suggest that the Urdu IPIP-300-NEO aligns well with the English IPIP-300-NEO. In some cases, the Urdu inventory performed better (e.g., higher internal consistency) than the English inventory.


Sign in / Sign up

Export Citation Format

Share Document