scholarly journals Analyzing signatures of aerosol-cloud interactions from satellite retrievals and the GISS GCM to constrain the aerosol indirect effect

2008 ◽  
Vol 113 (D14) ◽  
Author(s):  
Surabi Menon ◽  
Anthony D. Del Genio ◽  
Yoram Kaufman ◽  
Ralf Bennartz ◽  
Dorothy Koch ◽  
...  
2009 ◽  
Vol 9 (1) ◽  
pp. 4691-4725 ◽  
Author(s):  
N. Unger ◽  
S. Menon ◽  
D. T. Shindell ◽  
D. M. Koch

Abstract. The development of effective emissions control policies that are beneficial to both climate and air quality requires a detailed understanding of all the feedbacks in the atmospheric composition and climate system. We perform sensitivity studies with a global atmospheric composition-climate model to assess the impact of aerosols on tropospheric chemistry through their modification on clouds, the aerosol indirect effect (AIE). The model includes coupling between both tropospheric gas-phase and aerosol chemistry and aerosols and liquid-phase clouds. We investigate past impacts from preindustrial (PI) to present day (PD) and future impacts from PD to 2050 (for the moderate IPCC A1B scenario) that embrace a wide spectrum of precursor emission changes and consequential aerosol-cloud interactions. The AIE is estimated to be −2.0 W m−2 for PD–PI and −0.6 W m−2 for 2050–PD, at the high end of current estimates. Inclusion of aerosol-cloud interactions substantially impacts changes in global mean methane lifetime across both time periods, enhancing the past and future increases by 10% and 30%, respectively. In regions where pollution emissions increase, inclusion of aerosol-cloud effects leads to 20% enhancements in in-cloud sulfate production and ~10% enhancements in sulfate wet deposition that is displaced away from the immediate source regions. The enhanced in-cloud sulfate formation leads to larger increases in surface sulfate across polluted regions (~10–30%). Nitric acid wet deposition is dampened by 15–20% across the industrialized regions due to AIE allowing additional re-release of reactive nitrogen that contributes to 1–2 ppbv increases in surface ozone in outflow regions. Our model findings indicate that aerosol-cloud interactions must be considered in studies of methane trends and projections of future changes to particulate matter air quality.


2020 ◽  
Author(s):  
Katherine H. Breen ◽  
Donifan Barahona ◽  
Tianle Yuan ◽  
Huisheng Bian ◽  
Scott C. James

Abstract. Aerosol emissions from volcanic eruptions in otherwise clean environments are regarded as natural experiments where the aerosol effects on clouds and climate can be partitioned from other effects like meteorology and anthropogenic emissions. In this work, we combined satellite retrievals, reanalysis products, and atmospheric modeling to analyze the mechanism of aerosol-cloud interactions during two degassing events at the Kilauea Volcano in 2008 and 2018. The eruptive nature of the 2008 and 2018 degassing events was distinct from long-term volcanic activity for Kilauea. For both events, we performed a comprehensive investigation on the effects of aerosol emissions on macro and microphysical cloud processes for both liquid and ice clouds. This is the first time such an analysis has been reported for the 2018 event. Similarities between both events suggested that aerosol-cloud interactions related to the cloud albedo modification were likely decoupled from local meteorology. In both events the ingestion of aerosols within convective parcels enhanced the detrainment of condensate in the upper troposphere resulting in deeper clouds than in pristine conditions. Accounting for ice nucleation on ash particles led to enhanced ice crystal concentrations at cirrus levels and a slight decrease in ice water content, improving the correlation of the model results with the satellite retrievals. Overall, aerosol loading, plume characteristics, and meteorology contributed to observed and simulated changes in clouds during the Kilauea degassing events.


2017 ◽  
Vol 17 (10) ◽  
pp. 6305-6322 ◽  
Author(s):  
Anahita Amiri-Farahani ◽  
Robert J. Allen ◽  
David Neubauer ◽  
Ulrike Lohmann

Abstract. One component of aerosol–cloud interactions (ACI) involves dust and marine stratocumulus clouds (MSc). Few observational studies have focused on dust–MSc interactions, and thus this effect remains poorly quantified. We use observations from multiple sensors in the NASA A-Train satellite constellation from 2004 to 2012 to obtain estimates of the aerosol–cloud radiative effect, including its uncertainty, of dust aerosol influencing Atlantic MSc off the coast of northern Africa between 45° W and 15° E and between 0 and 35° N. To calculate the aerosol–cloud radiative effect, we use two methods following Quaas et al. (2008) (Method 1) and Chen et al. (2014) (Method 2). These two methods yield similar results of −1.5 ± 1.4 and −1.5 ± 1.6 W m−2, respectively, for the annual mean aerosol–cloud radiative effect. Thus, Saharan dust modifies MSc in a way that acts to cool the planet. There is a strong seasonal variation, with the aerosol–cloud radiative effect switching from significantly negative during the boreal summer to weakly positive during boreal winter. Method 1 (Method 2) yields −3.8 ± 2.5 (−4.3 ± 4.1) during summer and 1 ± 2.9 (0.6 ± 1) W m−2 during winter. In Method 1, the aerosol–cloud radiative effect can be decomposed into two terms, one representing the first aerosol indirect effect and the second representing the combination of the second aerosol indirect effect and the semidirect effect (i.e., changes in liquid water path and cloud fraction in response to changes in absorbing aerosols and local heating). The first aerosol indirect effect is relatively small, varying from −0.7 ± 0.6 in summer to 0.1 ± 0.5 W m−2 in winter. The second term, however, dominates the overall radiative effect, varying from −3.2 ± 2.5 in summer to 0.9 ± 2.9 W m−2 during winter. Studies show that the semidirect effect can result in a negative (i.e., absorbing aerosol lies above low clouds like MSc) or positive (i.e., absorbing aerosol lies within low clouds) aerosol–cloud radiative effect. The semipermanent MSc are low and confined within the boundary layer. CALIPSO shows that 61.8 ± 12.6 % of Saharan dust resides above North Atlantic MSc during summer for our study area. This is consistent with a relatively weak first aerosol indirect effect and also suggests the second aerosol indirect effect plus semidirect effect (the second term in Method 1) is dominated by the semidirect effect. In contrast, the percentage of Saharan dust above North Atlantic MSc in winter is 11.9 ± 10.9 %, which is much lower than in summer. CALIPSO also shows that 88.3 ± 8.5 % of dust resides below 2.2 km the winter average of MSc top height. During summer, however, there are two peaks, with 35.6 ± 13 % below 1.9 km (summer average of MSc top height) and 44.4 ± 9.2 % between 2 and 4 km. Because the aerosol–cloud radiative effect is positive during winter, and is also dominated by the second term, this again supports the importance of the semidirect effect. We conclude that Saharan dust–MSc interactions off the coast of northern Africa are likely dominated by the semidirect effect.


2021 ◽  
Vol 21 (10) ◽  
pp. 7749-7771
Author(s):  
Katherine H. Breen ◽  
Donifan Barahona ◽  
Tianle Yuan ◽  
Huisheng Bian ◽  
Scott C. James

Abstract. Volcanic eruptions in otherwise clean environments are “natural experiments” wherein the effects of aerosol emissions on clouds and climate can be partitioned from meteorological variability and anthropogenic activities. In this work, we combined satellite retrievals, reanalysis products, and atmospheric modeling to analyze the mechanisms of aerosol–cloud interactions during two degassing events at the Kilauea volcano in 2008 and 2018. The eruptive nature of the 2008 and 2018 degassing events was distinct from long-term volcanic activity for Kilauea. Although previous studies assessed the modulation of cloud properties from the 2008 event, this is the first time such an analysis has been reported for the 2018 event and that multiple degassing events have been analyzed and compared at this location. Both events resulted in significant changes in cloud effective radius and cloud droplet number concentration that were decoupled from local meteorology and in line with an enhanced cloud albedo. However, it is likely that the effects of volcanic emissions on liquid water path and cloud fraction were largely offset by meteorological variability. Comparison of cloud anomalies between the two events suggested a threshold response of aerosol–cloud interactions to overcome meteorological effects, largely controlled by aerosol loading. In both events, the ingestion of aerosols within convective parcels enhanced the detrainment of condensate in the upper troposphere, resulting in deeper clouds than observed under pristine conditions. Accounting for ice nucleation on ash particles led to enhanced ice crystal concentrations at cirrus levels and a slight decrease in ice water content, improving the correlation of the model results with the satellite retrievals. Overall, aerosol loading, plume characteristics, and meteorology contributed to changes in cloud properties during the Kilauea degassing events.


2016 ◽  
Author(s):  
Anahita Amiri-Farahani ◽  
Robert J. Allen ◽  
David Neubauer ◽  
Ulrike Lohmann

Abstract. One component of aerosol-cloud interactions (ACI) involves dust and marine stratocumulus clouds (MSc). Few observational studies have focused on dust-MSc interactions, thus this effect remains poorly quantified. We use observations from multiple sensors in the NASA A-Train satellite constellation from 2004 to 2012 to obtain estimates of the aerosol-cloud radiative effect, including its uncertainty, for dust aerosol influencing Atlantic MSc off the coast of North Africa between 45° W and 15° E, and 0–35° N. To calculate the aerosol-cloud radiative effect, we use two methods following Quaas et al. (2008) (Method 1) and Chen et al. (2014) (Method 2). These two methods yield similar results of −3.99 ± 0.78 and −3.21 ± 3.61 W m−2, respectively, for the annual mean aerosol-cloud radiative effect. Thus, Saharan dust modifies MSc in a way that acts to cool the planet. There is a strong seasonal variation, with the aerosol-cloud radiative effect switching from significantly negative during the boreal summer to weakly positive during boreal winter. Method 1 (Method 2) yields −3.81 ± 2.51 (−4.27 ± 4.01) during summer, and 0.97 ± 2.91 (0.63 ± 0.48) W m−2 during winter. In Method 1, the aerosol-cloud radiative effect can be decomposed into two terms, one representing the first aerosol indirect effect and the second representing the combination of the second aerosol indirect effect and the semi-direct effect (i.e., changes in liquid water path and cloud fraction in response to changes in absorbing aerosols and local heating). The first aerosol indirect effect is relatively small, varying from −0.65 ± 0.61 in summer to 0.05 ± 0.5 W m−2 in winter. The second term, however, dominates the overall radiative effect, varying from −3.16 ± 2.45 in summer to 0.92 ± 2.86 W m−2 during winter. Studies show that the semi-direct effect can result in a negative (i.e., absorbing aerosol lies above low clouds like MSc) or positive (i.e., absorbing aerosol lies within low clouds) aerosol-cloud radiative effect. CALIPSO shows that 50 % to 90 % of Saharan dust resides above North Atlantic MSc during summer for most of our study area. This is consistent with a relatively weak first aerosol indirect effect, and also suggests the second aerosol indirect effect plus semi-direct effect (the second term in Method 1) is dominated by the semi-direct effect. In contrast, the percentage of Saharan dust above North Atlantic MSc is much lower during the winter, ranging from 10 % to 40 %. Because the aerosol-cloud radiative effect is positive during winter, and is also dominated by the second term, this again supports the importance of the semi-direct effect. We conclude that Saharan dust-MSc interactions off the coast of north Africa are likely dominated by the semi-direct effect.


2018 ◽  
Vol 18 (10) ◽  
pp. 7669-7690 ◽  
Author(s):  
Inger Helene Hafsahl Karset ◽  
Terje Koren Berntsen ◽  
Trude Storelvmo ◽  
Kari Alterskjær ◽  
Alf Grini ◽  
...  

Abstract. Uncertainties in effective radiative forcings through aerosol–cloud interactions (ERFaci, also called aerosol indirect effects) contribute strongly to the uncertainty in the total preindustrial-to-present-day anthropogenic forcing. Some forcing estimates of the total aerosol indirect effect are so negative that they even offset the greenhouse gas forcing. This study highlights the role of oxidants in modeling of preindustrial-to-present-day aerosol indirect effects. We argue that the aerosol precursor gases should be exposed to oxidants of its era to get a more correct representation of secondary aerosol formation. Our model simulations show that the total aerosol indirect effect changes from −1.32 to −1.07 W m−2 when the precursor gases in the preindustrial simulation are exposed to preindustrial instead of present-day oxidants. This happens because of a brightening of the clouds in the preindustrial simulation, mainly due to large changes in the nitrate radical (NO3). The weaker oxidative power of the preindustrial atmosphere extends the lifetime of the precursor gases, enabling them to be transported higher up in the atmosphere and towards more remote areas where the susceptibility of the cloud albedo to aerosol changes is high. The oxidation changes also shift the importance of different chemical reactions and produce more condensate, thus increasing the size of the aerosols and making it easier for them to activate as cloud condensation nuclei.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hailing Jia ◽  
Xiaoyan Ma ◽  
Fangqun Yu ◽  
Johannes Quaas

AbstractSatellite-based estimates of radiative forcing by aerosol–cloud interactions (RFaci) are consistently smaller than those from global models, hampering accurate projections of future climate change. Here we show that the discrepancy can be substantially reduced by correcting sampling biases induced by inherent limitations of satellite measurements, which tend to artificially discard the clouds with high cloud fraction. Those missed clouds exert a stronger cooling effect, and are more sensitive to aerosol perturbations. By accounting for the sampling biases, the magnitude of RFaci (from −0.38 to −0.59 W m−2) increases by 55 % globally (133 % over land and 33 % over ocean). Notably, the RFaci further increases to −1.09 W m−2 when switching total aerosol optical depth (AOD) to fine-mode AOD that is a better proxy for CCN than AOD. In contrast to previous weak satellite-based RFaci, the improved one substantially increases (especially over land), resolving a major difference with models.


Sign in / Sign up

Export Citation Format

Share Document