scholarly journals Impacts of future climate change and emissions reductions on nitrogen and sulfur deposition over the United States

2008 ◽  
Vol 35 (8) ◽  
Author(s):  
Efthimios Tagaris ◽  
Kuo-Jen Liao ◽  
Kasemsan Manomaiphiboon ◽  
Jung-Hun Woo ◽  
Shan He ◽  
...  
2014 ◽  
Vol 05 (03) ◽  
pp. 1450009
Author(s):  
FRANCES SUSSMAN ◽  
BANSARI SAHA ◽  
BRITTA G. BIERWAGEN ◽  
CHRISTOPHER P. WEAVER ◽  
WILL COOPER ◽  
...  

Climate in a given location influences people's housing decisions, and changes in climate may affect these decisions in ways that alter our understanding of desirable locations. This study examines the potential sensitivity of future housing prices in the United States to changes in temperature, precipitation, and humidity by developing a hedonic regression model of the relationship between climate variables and housing prices and exploring implications of different climate futures for the amenity value of climate in these prices. The model shows a significant relationship between housing prices in urban areas and certain climate variables. The study then examines the sensitivity of the amenity value of climate to future climate scenarios. Results suggest that, nationally, climate change represents a disamenity, particularly in central-to-southeastern states. However, detailed housing prices vary spatially and among scenarios. Seasonal variation in temperature, including the relative magnitudes of the change in January and July temperatures, is a key determinant of housing price change, contributing to variation across both climate scenarios and geographic location.


GeoHealth ◽  
2017 ◽  
Vol 1 (3) ◽  
pp. 80-92 ◽  
Author(s):  
Susan C. Anenberg ◽  
Kate R. Weinberger ◽  
Henry Roman ◽  
James E. Neumann ◽  
Allison Crimmins ◽  
...  

2014 ◽  
Vol 94 ◽  
pp. 552-563 ◽  
Author(s):  
M. Trail ◽  
A.P. Tsimpidi ◽  
P. Liu ◽  
K. Tsigaridis ◽  
J. Rudokas ◽  
...  

2021 ◽  
Author(s):  
Brandi Gamelin ◽  
Jiali Wang ◽  
V. Rao Kotamarthi

<p>Flash droughts are the rapid intensification of drought conditions generally associated with increased temperatures and decreased precipitation on short time scales.  Consequently, flash droughts are responsible for reduced soil moisture which contributes to diminished agricultural yields and lower groundwater levels. Drought management, especially flash drought in the United States is vital to address the human and economic impact of crop loss, diminished water resources and increased wildfire risk. In previous research, climate change scenarios show increased growing season (i.e. frost-free days) and drying in soil moisture over most of the United States by 2100. Understanding projected flash drought is important to assess regional variability, frequency and intensity of flash droughts under future climate change scenarios. Data for this work was produced with the Weather Research and Forecasting (WRF) model. Initial and boundary conditions for the model were supplied by CCSM4, GFDL-ESM2G, and HadGEM2-ES and based on the 8.5 Representative Concentration Pathway (RCP8.5). The WRF model was downscaled to a 12 km spatial resolution for three climate time frames: 1995-2004 (Historical), 2045-2054 (Mid), and 2085-2094 (Late).  A key characteristic of flash drought is the rapid onset and intensification of dry conditions. For this, we identify onset with vapor pressure deficit during each time frame. Known flash drought cases during the Historical run are identified and compared to flash droughts in the Mid and Late 21<sup>st</sup> century.</p>


2021 ◽  
Author(s):  
Yabin Da ◽  
Yangyang Xu ◽  
Bruce McCarl

<p>Surface ozone pollution has been proven to impose significant damages on crops. However, the quantification of the damages was extensively derived from chamber experiments, which is not representative of actual results in farm fields due to the limitations of spatial scale, time window, etc. In this work, we attempt to empirically fill this gap using county-level data in the United States from 1980 to 2015. We explore ozone impacts on corn, soybeans, spring wheat, winter wheat, barley, cotton, peanuts, rice, sorghum, and sunflower. We also incorporate a variety of climate variables to investigate potential ozone-climate interactions. More importantly, we shed light on future yield consequences of ozone and climate change individually and jointly under a moderate warming scenario. Our findings suggest significant negative impacts of ozone exposure for eight of the ten crops we examined, excepting barley and winter wheat, which contradicts experimental results. The average annual damages were estimated at $6.03 billion (in 2015 U.S. dollar) from 1980 to 2015. We also find rising temperatures tend to worsen ozone damages while water supply would mitigate that. Finally, elevated ozone driven by future climate change would cause much smaller damages than the direct effects of climate change itself.</p>


2007 ◽  
Vol 7 (4) ◽  
pp. 9867-9897 ◽  
Author(s):  
P. N. Racherla ◽  
P. J. Adams

Abstract. We examined the response of surface ozone to future climate change over the eastern United States by performing simulations corresponding to present (1990s) and future (2050s) climates using an integrated model of global climate, tropospheric gas-phase chemistry, and aerosols. A future climate has been imposed using ocean boundary conditions corresponding to the IPCC SRES A2 scenario for the 2050 s decade, resulting in an increase in the global annual-average surface air temperature by 1.7°C, with a 1.4°C increase over the surface layer of the eastern United States. Present-day anthropogenic emissions and CO2/CH4 mixing ratios have been used in both simulations while climate-sensitive natural emissions were allowed to vary with the simulated climate. There is practically zero change in the spatiotemporally averaged ozone mixing ratios predicted over the eastern United States. However, the severity and frequency of ozone episodes over the eastern United States increased due to future climate change, primarily as a result of increased ozone chemical production due to increased natural isoprene emissions. The 95th percentile ozone mixing ratio increased by 5 ppbv and the largest frequency increase occured in the 80–90 ppbv range. The most substantial and statistically significant (p-value <0.05) increases in episode frequency occurred over the southeast and midatlantic United States, largely as a result of 20% higher annual-average natural isoprene emissions. Increased chemical production and shorter average lifetime are consistent features of the predicted seasonal surface ozone response, with the former's magnitude for a location largely a function of increased natural isoprene emissions, and the latter largely due to faster dry deposition removal rates. Future climate change is also predicted to lengthen the ozone season over the eastern United States to include late spring and early fall. Significant interannual variability is observed in the frequency of ozone episodes and we find that it is necessary to utilize 5 years or more of simulation data in order to separate the effects of interannual variability and climate change on ozone episodes.


Sign in / Sign up

Export Citation Format

Share Document