scholarly journals ESTIMATES OF CHANGES IN COUNTY-LEVEL HOUSING PRICES IN THE UNITED STATES UNDER SCENARIOS OF FUTURE CLIMATE CHANGE

2014 ◽  
Vol 05 (03) ◽  
pp. 1450009
Author(s):  
FRANCES SUSSMAN ◽  
BANSARI SAHA ◽  
BRITTA G. BIERWAGEN ◽  
CHRISTOPHER P. WEAVER ◽  
WILL COOPER ◽  
...  

Climate in a given location influences people's housing decisions, and changes in climate may affect these decisions in ways that alter our understanding of desirable locations. This study examines the potential sensitivity of future housing prices in the United States to changes in temperature, precipitation, and humidity by developing a hedonic regression model of the relationship between climate variables and housing prices and exploring implications of different climate futures for the amenity value of climate in these prices. The model shows a significant relationship between housing prices in urban areas and certain climate variables. The study then examines the sensitivity of the amenity value of climate to future climate scenarios. Results suggest that, nationally, climate change represents a disamenity, particularly in central-to-southeastern states. However, detailed housing prices vary spatially and among scenarios. Seasonal variation in temperature, including the relative magnitudes of the change in January and July temperatures, is a key determinant of housing price change, contributing to variation across both climate scenarios and geographic location.

2008 ◽  
Vol 35 (8) ◽  
Author(s):  
Efthimios Tagaris ◽  
Kuo-Jen Liao ◽  
Kasemsan Manomaiphiboon ◽  
Jung-Hun Woo ◽  
Shan He ◽  
...  

GeoHealth ◽  
2017 ◽  
Vol 1 (3) ◽  
pp. 80-92 ◽  
Author(s):  
Susan C. Anenberg ◽  
Kate R. Weinberger ◽  
Henry Roman ◽  
James E. Neumann ◽  
Allison Crimmins ◽  
...  

2014 ◽  
Vol 94 ◽  
pp. 552-563 ◽  
Author(s):  
M. Trail ◽  
A.P. Tsimpidi ◽  
P. Liu ◽  
K. Tsigaridis ◽  
J. Rudokas ◽  
...  

2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


2021 ◽  
Author(s):  
Brandi Gamelin ◽  
Jiali Wang ◽  
V. Rao Kotamarthi

<p>Flash droughts are the rapid intensification of drought conditions generally associated with increased temperatures and decreased precipitation on short time scales.  Consequently, flash droughts are responsible for reduced soil moisture which contributes to diminished agricultural yields and lower groundwater levels. Drought management, especially flash drought in the United States is vital to address the human and economic impact of crop loss, diminished water resources and increased wildfire risk. In previous research, climate change scenarios show increased growing season (i.e. frost-free days) and drying in soil moisture over most of the United States by 2100. Understanding projected flash drought is important to assess regional variability, frequency and intensity of flash droughts under future climate change scenarios. Data for this work was produced with the Weather Research and Forecasting (WRF) model. Initial and boundary conditions for the model were supplied by CCSM4, GFDL-ESM2G, and HadGEM2-ES and based on the 8.5 Representative Concentration Pathway (RCP8.5). The WRF model was downscaled to a 12 km spatial resolution for three climate time frames: 1995-2004 (Historical), 2045-2054 (Mid), and 2085-2094 (Late).  A key characteristic of flash drought is the rapid onset and intensification of dry conditions. For this, we identify onset with vapor pressure deficit during each time frame. Known flash drought cases during the Historical run are identified and compared to flash droughts in the Mid and Late 21<sup>st</sup> century.</p>


2021 ◽  
Author(s):  
Yabin Da ◽  
Yangyang Xu ◽  
Bruce McCarl

<p>Surface ozone pollution has been proven to impose significant damages on crops. However, the quantification of the damages was extensively derived from chamber experiments, which is not representative of actual results in farm fields due to the limitations of spatial scale, time window, etc. In this work, we attempt to empirically fill this gap using county-level data in the United States from 1980 to 2015. We explore ozone impacts on corn, soybeans, spring wheat, winter wheat, barley, cotton, peanuts, rice, sorghum, and sunflower. We also incorporate a variety of climate variables to investigate potential ozone-climate interactions. More importantly, we shed light on future yield consequences of ozone and climate change individually and jointly under a moderate warming scenario. Our findings suggest significant negative impacts of ozone exposure for eight of the ten crops we examined, excepting barley and winter wheat, which contradicts experimental results. The average annual damages were estimated at $6.03 billion (in 2015 U.S. dollar) from 1980 to 2015. We also find rising temperatures tend to worsen ozone damages while water supply would mitigate that. Finally, elevated ozone driven by future climate change would cause much smaller damages than the direct effects of climate change itself.</p>


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 286
Author(s):  
Bangshuai Han ◽  
Shawn G. Benner ◽  
Alejandro N. Flores

:In intensively managed watersheds, water scarcity is a product of interactions between complex biophysical processes and human activities. Understanding how intensively managed watersheds respond to climate change requires modeling these coupled processes. One challenge in assessing the response of these watersheds to climate change lies in adequately capturing the trends and variability of future climates. Here we combine a stochastic weather generator together with future projections of climate change to efficiently create a large ensemble of daily weather for three climate scenarios, reflecting recent past and two future climate scenarios. With a previously developed model that captures rainfall-runoff processes and the redistribution of water according to declared water rights, we use these large ensembles to evaluate how future climate change may impact satisfied and unsatisfied irrigation throughout the study area, the Treasure Valley in Southwest Idaho, USA. The numerical experiments quantify the changing rate of allocated and unsatisfied irrigation amount and reveal that the projected temperature increase more significantly influences allocated and unsatisfied irrigation amounts than precipitation changes. The scenarios identify spatially distinct regions in the study area that are at greater risk of the occurrence of unsatisfied irrigation. This study demonstrates how combining stochastic weather generators and future climate projections can support efforts to assess future risks of negative water resource outcomes. It also allows identification of regions in the study area that may be less suitable for irrigated agriculture in future decades, potentially benefiting planners and managers.


Sign in / Sign up

Export Citation Format

Share Document