Short-term upper-ocean variability in the central equatorial Indian Ocean during 2006 Indian Ocean Dipole event

2008 ◽  
Vol 35 (14) ◽  
Author(s):  
Yukio Masumoto ◽  
Takanori Horii ◽  
Iwao Ueki ◽  
Hideaki Hase ◽  
Kentaro Ando ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Shi ◽  
Menghua Wang

AbstractThe 2019 positive Indian Ocean Dipole (IOD) event in the boreal autumn was the most serious IOD event of the century with reports of significant sea surface temperature (SST) changes in the east and west equatorial Indian Ocean. Observations of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) between 2012 and 2020 are used to study the significant biological dipole response that occurred in the equatorial Indian Ocean following the 2019 positive IOD event. For the first time, we propose, identify, characterize, and quantify the biological IOD. The 2019 positive IOD event led to anomalous biological activity in both the east IOD zone and west IOD zone. The average chlorophyll-a (Chl-a) concentration reached over ~ 0.5 mg m−3 in 2019 in comparison to the climatology Chl-a of ~ 0.3 mg m−3 in the east IOD zone. In the west IOD zone, the biological activity was significantly depressed. The depressed Chl-a lasted until May 2020. The anomalous ocean biological activity in the east IOD zone was attributed to the advection of the higher-nutrient surface water due to enhanced upwelling. On the other hand, the dampened ocean biological activity in the west IOD zone was attributed to the stronger convergence of the surface waters than that in a normal year.


2021 ◽  
pp. 1-50
Author(s):  
Ge Song ◽  
Bohua Huang ◽  
Rongcai Ren ◽  
Zeng-Zhen Hu

AbstractIn this paper, the interannual variability of upper-ocean temperature in the equatorial Indian Ocean (IO) and its basin-wide connections are investigated using 58-year (1958-2015) comprehensive monthly mean ocean reanalysis data. Three leading modes of an empirical orthogonal function (EOF) analysis dominate the variability of upper-ocean temperature in the equatorial IO in a wide range of timescales. A coherent interannual band within the first two EOF modes identifies an oscillation between the zonally tilting thermocline across the equatorial IO in its peak phases and basin-wide displacement of the equatorial thermocline in its transitional phases. Consistent with the recharge oscillation paradigm, this oscillation is inherent of the equatorial IO with a quasi-periodicity around 15 months, in which the wind-induced off-equatorial Rossby waves near 5°S-10°S provide the phase-transition mechanism. This intrinsic IO oscillation provides the biennial component in the observed IOD variations. The third leading mode shows a nonlinear long-term trend of the upper-ocean temperature, including the near-surface warming along the equatorial Indian Ocean, accompanied by cooling trend in the lower thermocline originating further south. Such vertical contrary trends may lead to an enhanced stratification in the equatorial IO.


2021 ◽  
pp. 1-39
Author(s):  
Lei Zhang ◽  
Weiqing Han ◽  
Zeng-Zhen Hu

AbstractAn unprecedented extreme positive Indian Ocean Dipole event (pIOD) occurred in 2019, which has caused widespread disastrous impacts on countries bordering the Indian Ocean, including the East African floods and vast bushfires in Australia. Here we investigate the causes for the 2019 pIOD by analyzing multiple observational datasets and performing numerical model experiments. We find that the 2019 pIOD is triggered in May by easterly wind bursts over the tropical Indian Ocean associated with the dry phase of the boreal summer intraseasonal oscillation, and sustained by the local atmosphere-ocean interaction thereafter. During September-November, warm sea surface temperature anomalies (SSTA) in the central-western tropical Pacific further enhance the Indian Ocean’s easterly winds, bringing the pIOD to an extreme magnitude. The central-western tropical Pacific warm SSTA is strengthened by two consecutive Madden Julian Oscillation (MJO) events that originate from the tropical Indian Ocean. Our results highlight the important roles of cross-basin and cross-timescale interactions in generating extreme IOD events. The lack of accurate representation of these interactions may be the root for a short lead time in predicting this extreme pIOD with a state-of-the-art climate forecast model.


2001 ◽  
Vol 28 (21) ◽  
pp. 4151-4154 ◽  
Author(s):  
Ming Feng ◽  
Gary Meyers ◽  
Susan Wijffels

2010 ◽  
Vol 23 (5) ◽  
pp. 1240-1253 ◽  
Author(s):  
Xiao-Tong Zheng ◽  
Shang-Ping Xie ◽  
Gabriel A. Vecchi ◽  
Qinyu Liu ◽  
Jan Hafner

Abstract Low-frequency modulation and change under global warming of the Indian Ocean dipole (IOD) mode are investigated with a pair of multicentury integrations of a coupled ocean–atmosphere general circulation model: one under constant climate forcing and one forced by increasing greenhouse gas concentrations. In the unforced simulation, there is significant decadal and multidecadal modulation of the IOD variance. The mean thermocline depth in the eastern equatorial Indian Ocean (EEIO) is important for the slow modulation, skewness, and ENSO correlation of the IOD. With a shoaling (deepening) of the EEIO thermocline, the thermocline feedback strengthens, and this leads to an increase in IOD variance, a reduction of the negative skewness of the IOD, and a weakening of the IOD–ENSO correlation. In response to increasing greenhouse gases, a weakening of the Walker circulation leads to easterly wind anomalies in the equatorial Indian Ocean; the oceanic response to weakened circulation is a thermocline shoaling in the EEIO. Under greenhouse forcing, the thermocline feedback intensifies, but surprisingly IOD variance does not. The zonal wind anomalies associated with IOD are found to weaken, likely due to increased static stability of the troposphere from global warming. Linear model experiments confirm this stability effect to reduce circulation response to a sea surface temperature dipole. The opposing changes in thermocline and atmospheric feedbacks result in little change in IOD variance, but the shoaling thermocline weakens IOD skewness. Little change under global warming in IOD variance in the model suggests that the apparent intensification of IOD activity during recent decades is likely part of natural, chaotic modulation of the ocean–atmosphere system or the response to nongreenhouse gas radiative changes.


2010 ◽  
Vol 7 (2) ◽  
pp. 296-300 ◽  
Author(s):  
P R C Rahul ◽  
P S Salvekar ◽  
B K Sahu ◽  
Shailesh Nayak ◽  
T Srinivas Kumar

2021 ◽  
Vol 925 (1) ◽  
pp. 012007
Author(s):  
P A Utari

Abstract The evolution of Indian Ocean Dipole (IOD) events in 2006 and 2010 is investigated using observational data products that are made to understand several processes in the positive (negative) phase of IOD events. Two Acoustic Doppler Current Profiler (ADCP) moorings mounted at 90°E and 80.5°E along the equator were used to evaluate the zonal current variation during two contrasting Indian Ocean Dipole (IO) events. Westward anomalies of the zonal current were observed at 0°, 80.5°E during the peak phase of the positive IOD event from October to December 2006. Meanwhile, the observed zonal currents at 0°, 90°E only showed the short-term westward anomalies during October 2006. On the other hand, during the negative IOD event in 2010, the observed zonal current at both mooring locations indicated strong intraseasonal variations of the eastward anomalies from August to December 2010. Strong easterly (westerly) anomalies of the surface zonal winds were observed during the peak phase of the positive (negative) IOD event in 2006 (2010). These easterly (westerly) anomalies forced upwelling (downwelling) equatorial Kelvin waves indicated by the negative (positive) sea surface height anomalies. Strengthening (weakening) of upwelling (downwelling) along the equatorial Indian Ocean would be a significant factor for further understanding of IOD evolution.


Sign in / Sign up

Export Citation Format

Share Document