scholarly journals The effects of seasonal and diurnal variations in the Earth's magnetic dipole orientation on solar wind-magnetosphere-ionosphere coupling

2012 ◽  
Vol 117 (A11) ◽  
pp. n/a-n/a ◽  
Author(s):  
Ingrid Cnossen ◽  
Michael Wiltberger ◽  
Jeremy E. Ouellette
2011 ◽  
Vol 116 (D15) ◽  
Author(s):  
L. K. Sahu ◽  
Y. Kondo ◽  
Y. Miyazaki ◽  
Prapat Pongkiatkul ◽  
N. T. Kim Oanh

2015 ◽  
Vol 120 (2) ◽  
pp. 311-342 ◽  
Author(s):  
S. W. Bougher ◽  
D. Pawlowski ◽  
J. M. Bell ◽  
S. Nelli ◽  
T. McDunn ◽  
...  

1999 ◽  
Vol 67 (1) ◽  
pp. 45-51 ◽  
Author(s):  
G. H. Goedecke ◽  
Roy C. Wood ◽  
Paul Nachman

2009 ◽  
Vol 13 (7) ◽  
pp. 987-998 ◽  
Author(s):  
Z. Gao ◽  
D. H. Lenschow ◽  
Z. He ◽  
M. Zhou

Abstract. In order to examine energy partitioning and CO2 exchange over a steppe prairie in Inner Mongolia, China, fluxes of moisture, heat and CO2 in the surface layer from June 2007 through June 2008 were calculated using the eddy covariance method. The study site was homogenous and approximately 1500 m×1500 m in size. Seasonal and diurnal variations in radiation components, energy components and CO2 fluxes are examined. Results show that all four radiation components changed seasonally, resulting in a seasonal variation in net radiation. The radiation components also changed diurnally. Winter surface albedo was higher than summer surface albedo because during winter the snow-covered surface increased the surface albedo. The seasonal variations in both sensible heat and CO2 fluxes were stronger than those of latent heat and soil heat fluxes. Sensible heat flux was the main consumer of available energy for the entire experimental period. The energy imbalance problem was encountered and the causes are analyzed.


2020 ◽  
Vol 633 ◽  
pp. A87 ◽  
Author(s):  
L. Griton ◽  
F. Pantellini

Context. As proven by measurements at Uranus and Neptune, the magnetic dipole axis and planetary spin axis can be off by a large angle exceeding 45°. The magnetosphere of such an (exo-)planet is highly variable over a one-day period and it does potentially exhibit a complex magnetic tail structure. The dynamics and shape of rotating magnetospheres do obviously depend on the planet’s characteristics but also, and very substantially, on the orientation of the planetary spin axis with respect to the impinging, generally highly supersonic, stellar wind. Aims. On its orbit around the Sun, the orientation of Uranus’ spin axis with respect to the solar wind changes from quasi-perpendicular (solstice) to quasi-parallel (equinox). In this paper, we simulate the magnetosphere of a fictitious Uranus-like planet plunged in a supersonic plasma (the stellar wind) at equinox. A simulation with zero wind velocity is also presented in order to help disentangle the effects of the rotation from the effects of the supersonic wind in the structuring of the planetary magnetic tail. Methods. The ideal magnetohydrodynamic (MHD) equations in conservative form are integrated on a structured spherical grid using the Message-Passing Interface-Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC). In order to limit diffusivity at grid level, we used background and residual decomposition of the magnetic field. The magnetic field is thus made of the sum of a prescribed time-dependent background field B0(t) and a residual field B1(t) computed by the code. In our simulations, B0(t) is essentially made of a rigidly rotating potential dipole field. Results. The first simulation shows that, while plunged in a non-magnetised plasma, a magnetic dipole rotating about an axis oriented at 90° with respect to itself does naturally accelerate the plasma away from the dipole around the rotation axis. The acceleration occurs over a spatial scale of the order of the Alfvénic co-rotation scale r*. During the acceleration, the dipole lines become stretched and twisted. The observed asymptotic fluid velocities are of the order of the phase speed of the fast MHD mode. In two simulations where the surrounding non-magnetised plasma was chosen to move at supersonic speed perpendicularly to the rotation axis (a situation that is reminiscent of Uranus in the solar wind at equinox), the lines of each hemisphere are symmetrically twisted and stretched as before. However, they are also bent by the supersonic flow, thus forming a magnetic tail of interlaced field lines of opposite polarity. Similarly to the case with no wind, the interlaced field lines and the attached plasma are accelerated by the rotation and also by the transfer of kinetic energy flux from the surrounding supersonic flow. The tailwards fluid velocity increases asymptotically towards the externally imposed flow velocity, or wind. In one more simulation, a transverse magnetic field, to both the spin axis and flow direction, was added to the impinging flow so that magnetic reconnection could occur between the dipole anchored field lines and the impinging field lines. No major difference with respect to the no-magnetised flow case is observed, except that the tailwards acceleration occurs in two steps and is slightly more efficient. In order to emphasise the effect of rotation, we only address the case of a fast-rotating planet where the co-rotation scale r* is of the order of the planetary counter-flow magnetopause stand-off distance rm. For Uranus, r*≫ rm and the effects of rotation are only visible at large tailwards distances r ≫ rm.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 849 ◽  
Author(s):  
Guojing Gan ◽  
Yuanbo Liu ◽  
Xin Pan ◽  
Xiaosong Zhao ◽  
Mei Li ◽  
...  

The Priestley–Taylor equation (PTE) is widely used with its sole parameter (α) set as 1.26 for estimating the evapotranspiration (ET) of water bodies. However, variations in α may be large for ephemeral lakes. Poyang Lake, which is the largest freshwater lake in China, is water-covered and wetland-covered during its high-water and low-water periods, respectively, over a year. This paper examines the seasonal and diurnal variations in α using eddy covariance observation data for Poyang Lake. The results show that α = 1.26 is overall feasible for both periods at daily and subdaily scales. No obvious seasonal trend was observed, although the standard deviation in α for the wetland was larger than that for the water surface. The mean bias in evaporation estimations using the PTE was less than 5 W·m−2 during both periods, and the root mean square errors were much smaller than the average evaporation measurements at daily scale. U-shaped diurnal patterns of α were found during both periods, due partly to the negative correlation between α and the available energy (A). Compared to the vapor pressure deficit (VPD), wind speed (u) exerts a larger contribution to these variations. In addition, u is positively correlated with α during both periods, however, VPD was positively and negatively correlated with α during the high-water and low-water periods, respectively. Subdaily α exhibited contrasting clusters in the (u, VPD) plane under the same available energy ranges. Our study highlights the seasonal and diurnal course of α and suggests the careful use of PTE at subdaily scales.


1995 ◽  
Vol 73 (9-10) ◽  
pp. 642-646 ◽  
Author(s):  
M. A. El-Borie

Data, from the worldwide network of neutron monitors, recorded at Deep River, Hermanus, Rome, Tokyo, and Huancayo, over two solar cycles (Nos. 20 and 21) are analyzed to study the long-term variations of the solar diurnal variations as they relate to solar-wind speed. The median primary rigidities of response (Rm) for these detectors cover the range 16 GV ≤ Rm ≤ 33 GV. We discuss the solar diurnal variations (amplitude and phase) of cosmic rays as a function of solar activity. The behavior of solar diurnal phases is completely different for the two epochs of high-wind speed. Data of solar-wind speed from 1966–1986 are classified according to the state of the daily mean values. Variation in the amplitudes of the diurnal variations, as functions of the median primary rigidity of cosmic rays, for the two selected periods (1973–1975 and 1979–1981) of high and low solar-wind speeds were determined at the selected stations. The rigidity dependence of the averaged solar diurnal variations of cosmic rays related to the high solar-wind speed was studied. The most sensitive rigidity of modulation is around 20 and 30 GV during the 1973–1975 and 1979–1981 periods, respectively. Our results also show that there is a significant correlation in the solar diurnal amplitudes between the two divisions of high and low solar-wind speed days.


Sign in / Sign up

Export Citation Format

Share Document