scholarly journals Melt Impregnation of Mantle Peridotite Facilitates High‐Temperature Hydration and Mechanical Weakening: Implications for Oceanic Detachment Faults

2019 ◽  
Vol 20 (1) ◽  
pp. 84-108 ◽  
Author(s):  
Elmar Albers ◽  
Timothy Schroeder ◽  
Wolfgang Bach
1979 ◽  
Vol 20 (1) ◽  
pp. 48-59 ◽  
Author(s):  
H. Berckhemer ◽  
F. Auer ◽  
J. Drisler

1994 ◽  
Vol 9 (1) ◽  
pp. 63-67 ◽  
Author(s):  
G. Artioli ◽  
M. Bellotto ◽  
B. Palosz

A natural olivine sample from a mantle peridotite xenolith has been studied by in situ high-temperature powder diffraction. The structure has been successfully refined from powder data at three temperatures (25, 600, and 800 °C) using the Rietveld method. The study shows that the full-profile technique is well suited for the structure analysis of high-temperature powder diffraction data. The results indicate that, in this temperature range, there is no significant ordering of the Fe,Mg cations in the two crystallographically independent octahedral sites. This has implications for the thermodynamic modeling of olivine at upper mantle conditions. The present experiments allowed measurement of the lattice thermal expansion of olivine in the temperature range 25–800 °C, and assessment of the temperature dependence of the isotropic atomic displacement parameters.


2019 ◽  
Vol 60 (8) ◽  
pp. 1575-1620 ◽  
Author(s):  
Allan H Wilson

Abstract The c.3·3 Ga Commondale komatiites located south of the Barberton greenstone belt in the Kaapvaal Craton are different from other komatiites, possessing compositional and textural features unique to this occurrence. Unlike almost all other known komatiite occurrences, they are not associated with komatiitic basalts or basalts. The komatiite flows are 0·5–25 m thick and are made up of a marginal zone of spinifex-textured and fine-grained aphyric rocks (low-Mg group) and an inner zone of olivine cumulates (high-Mg group), arranged in such a way to give highly symmetrical compositional profiles for many flows. Olivine is the dominant phase in all rocks, but orthopyroxene occurs as spinifex and elongate laths in the marginal zone. Clinopyroxene and plagioclase are entirely absent. The olivine cumulates formed from Mg-rich magma (36·1% MgO, 6·8% FeO) which caused inflation of the thicker flows. The maximum observed olivine composition in cores (Fo 96·6) is the highest recorded for any komatiite worldwide. The high-Mg magma would have erupted at a temperature close to 1670°C, the highest inferred temperature for an anhydrous terrestrial lava. The marginal zone is enriched in incompatible elements compared with the inner zone and formed by fractionation of the parental melt. However, all rock-types in the marginal zone are depleted in FeO (some as low as 3·5%) which could not have been derived by any primary magmatic process. The marginal zone rocks were modified by assimilation and/or alteration by seawater (or brine) components causing migration of iron and strong enrichment of sodium (up to 1·6 wt % Na2O) and chlorine (up to 2400 ppm). Zirconium has an identical distribution to sodium, with both elements greatly enriched above what would result from fractional crystallization, and may result from speciation of these elements at high temperature followed by post-crystallization alteration. Rare earth elements, Y and Nb have contents commensurate with fractionation of the primitive parental magma. Dendritic-textured olivine-rich rocks with orthopyroxene spinifex spatially and compositionally transitional between the marginal zone and the olivine cumulates resulted from interaction of the high temperature parental magma in the centre of the flows with the fractionated melt at the flow margins. A further manifestation of this association is the development of highly regular fine-scale (5–15 cm) layering (up to 45 layers) of alternating olivine cumulate and spinifex near the base of thick flows. This is overlain by olivine cumulates in which the melt/crystal-mush became arranged into a 3-dimensional network controlled by re-distribution of the trapped melt manifest by a spectacular knobbly texture in outcrop. Over 200 flow units are recognized and detailed chemical and mineralogical studies were carried out on drill cores intersecting 375 m of stratigraphy. The parental magma was highly depleted (in ppm Nb 0·017, Zr 1·18, total REE 1·7 and Gd/YbN=0·3, La/YbN=0·038) and although generally regarded to fall into the rare category of Al-enriched komatiites (AEKs), it is considered that these lavas are a unique class of their own of ultra-depleted komatiites. Relative to other AEKs the Commondale komatiites are both enriched in Al as well as being markedly depleted in Ti (390 ppm), giving rise to the extremely high Al2O3/TiO2 (81). The high temperature and low viscosity of the magma resulted in emplacement processes previously unrecognized in komatiites. The primary melt was derived by melting of mantle peridotite in equilibrium with olivine and orthopyroxene. The initial source was depleted in incompatible elements by small degrees of melting (3–4%) followed by high degrees of partial melting (70%) of the subsequent refractory source at 5 GPa (∼150 km).


Solid Earth ◽  
2013 ◽  
Vol 4 (2) ◽  
pp. 277-314 ◽  
Author(s):  
J. M. Pownall ◽  
R. Hall ◽  
I. M. Watkinson

Abstract. The island of Seram, which lies in the northern part of the 180°-curved Banda Arc, has previously been interpreted as a fold-and-thrust belt formed during arc-continent collision, which incorporates ophiolites intruded by granites thought to have been produced by anatexis within a metamorphic sole. However, new geological mapping and a re-examination of the field relations cause us to question this model. We instead propose that there is evidence for recent and rapid N–S extension that has caused the high-temperature exhumation of lherzolites beneath low-angle lithospheric detachment faults that induced high-temperature metamorphism and melting in overlying crustal rocks. These "Kobipoto Complex" migmatites include highly residual Al–Mg-rich garnet + cordierite + sillimanite + spinel + corundum granulites (exposed in the Kobipoto Mountains) which contain coexisting spinel + quartz, indicating that peak metamorphic temperatures likely approached 900 °C. Associated with these residual granulites are voluminous Mio-Pliocene granitic diatexites, or "cordierite granites", which crop out on Ambon, western Seram, and in the Kobipoto Mountains and incorporate abundant schlieren of spinel- and sillimanite-bearing residuum. Quaternary "ambonites" (cordierite + garnet dacites) emplaced on Ambon were also evidently sourced from the Kobipoto Complex migmatites as demonstrated by granulite-inherited xenoliths. Exhumation of the hot peridotites and granulite-facies Kobipoto Complex migmatites to shallower structural levels caused greenschist- to lower-amphibolite facies metapelites and amphibolites of the Tehoru Formation to be overprinted by sillimanite-grade metamorphism, migmatisation, and limited localised anatexis to form the Taunusa Complex. The extreme extension required to have driven Kobipoto Complex exhumation evidently occurred throughout Seram and along much of the northern Banda Arc. The lherzolites must have been juxtaposed against the crust at typical lithospheric mantle temperatures in order to account for such high-temperature metamorphism and therefore could not have been part of a cooled ophiolite. In central Seram, lenses of peridotites are incorporated with a major left-lateral strike-slip shear zone (the "Kawa Shear Zone"), demonstrating that strike-slip motions likely initiated shortly after the mantle had been partly exhumed by detachment faulting and that the main strike-slip faults may themselves be reactivated and steepened low-angle detachments. The geodynamic driver for mantle exhumation along the detachment faults and strike-slip faulting in central Seram is very likely the same; we interpret the extreme extension to be the result of eastward slab rollback into the Banda Embayment as outlined by the latest plate reconstructions for Banda Arc evolution.


2020 ◽  
Author(s):  
Mingqi Liu ◽  
Taras Gerya ◽  
David Bercovici

<p>Oceanic detachment faults are large and long-lived (1-2 Myr), forming at slow- and ultraslow- mid-ocean ridges. They can expose lower crustal gabbroic rocks and mantle peridotite in the seafloor, recognized as oceanic core complexes (OCCs). Mechanical models proposed that detachment faults originate at high angle and, as fault offset increases, are rotated flexurally to an inactive low-angle configuration. Previous studies showed that long-lived detachment faults need a rheological boundary for the offset: (1) an alteration front; (2) the brittle-plastic transition (BPT); (3) the boundary between gabbro intrusions and weakened hydrated peridotite; or (4) low magma supply.  In order to better understand the rheological behavior of oceanic detachments, we investigate numerically potential effects of ductile weakening controlled by grain size reduction on the oceanic detachment faults formation as well as on their subsequent inversion during the Wilson cycle. We employ 3D thermomechanical numerical models with a composite rheology consisting of diffusion and dislocation creep. In our model, oceanic crust deforms in a brittle manner and its strength is controlled by fracture-related strain weakening and healing. In contrast, the lithospheric mantle deforms according to the dry olivine flow law, as a mixture of grain size-dependent diffusion and dislocation creep. Numerical results show that ductile weakening induced by grain size reduction could indeed notably influence both the style of detachment faulting and the fault dipping angles in the depth of the BPT. Grain size has a great effect on the offset of detachment faults and the formation of megamullions and controls the place of new subduction initiation below the BPT. We systematically investigate the influence of the thermal structure, initial grain size and spreading rate on the characteristic oceanic detachment fault pattern. In addition, we also study effects of these parameters on the final inversion of detachment faults during induced intra-oceanic subduction initiation.</p>


Author(s):  
M.S. Grewal ◽  
S.A. Sastri ◽  
N.J. Grant

Currently there is a great interest in developing nickel base alloys with fine and uniform dispersion of stable oxide particles, for high temperature applications. It is well known that the high temperature strength and stability of an oxide dispersed alloy can be greatly improved by appropriate thermomechanical processing, but the mechanism of this strengthening effect is not well understood. This investigation was undertaken to study the dislocation substructures formed in beryllia dispersed nickel alloys as a function of cold work both with and without intermediate anneals. Two alloys, one Ni-lv/oBeo and other Ni-4.5Mo-30Co-2v/oBeo were investigated. The influence of the substructures produced by Thermo-Mechanical Processing (TMP) on the high temperature creep properties of these alloys was also evaluated.


Sign in / Sign up

Export Citation Format

Share Document