Influence of Thermo-Mechanical Processing on the Microstructure of Beryllia Dispersed Nickel Alloys

Author(s):  
M.S. Grewal ◽  
S.A. Sastri ◽  
N.J. Grant

Currently there is a great interest in developing nickel base alloys with fine and uniform dispersion of stable oxide particles, for high temperature applications. It is well known that the high temperature strength and stability of an oxide dispersed alloy can be greatly improved by appropriate thermomechanical processing, but the mechanism of this strengthening effect is not well understood. This investigation was undertaken to study the dislocation substructures formed in beryllia dispersed nickel alloys as a function of cold work both with and without intermediate anneals. Two alloys, one Ni-lv/oBeo and other Ni-4.5Mo-30Co-2v/oBeo were investigated. The influence of the substructures produced by Thermo-Mechanical Processing (TMP) on the high temperature creep properties of these alloys was also evaluated.

Author(s):  
E. R. Kimmel ◽  
H. L. Anthony ◽  
W. Scheithauer

The strengthening effect at high temperature produced by a dispersed oxide phase in a metal matrix is seemingly dependent on at least two major contributors: oxide particle size and spatial distribution, and stability of the worked microstructure. These two are strongly interrelated. The stability of the microstructure is produced by polygonization of the worked structure forming low angle cell boundaries which become anchored by the dispersed oxide particles. The effect of the particles on strength is therefore twofold, in that they stabilize the worked microstructure and also hinder dislocation motion during loading.


Alloy Digest ◽  
1964 ◽  
Vol 13 (5) ◽  

Abstract Unitemp-HX is a nickel-base material recommended for high temperature applications. It has outstanding oxidation resistance at high temperatures under most operating conditions, and good high-temperature strength. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-91. Producer or source: Universal Cyclops Steel Corporation.


2019 ◽  
pp. 43-48
Author(s):  
Ben Nengjun ◽  
Zhou Pengfei ◽  
Oleksandr Labartkava ◽  
Mykhailo Samokhin

This work involves an analysis of high-chromium high-temperature deformable wieldable nickel alloys for use in GTE repair assemblies. It is shown that the alloys EP868 (VZh98) and Haynes 230 can be used in welded assemblies with an operating temperature of 800-1100 °C. The alloys Nimonic 81, Nimonic 91, IN 935, IN 939, and Nicrotan 2100 GT also have a high potential for use in welded assemblies. They are characterized by a combination of good weldability, high-temperature strength, and resistance to scaling. There have been conducted studies on high-temperature salt corrosion of model nickel alloys. They allowed establishing the patterns of the impact of base metal alloying with chromium, aluminum, titanium, cobalt, tungsten, molybdenum, niobium, tantalum and rare earth metals on the critical temperature of the start of salt corrosion Tcor and the alloy mass loss. It has been established that alloys with a moderate concentration (13-16%) of chromium can possess satisfactory hightemperature corrosion resistance (HTC resistance) under the operating conditions of ship GTE. The HTC resistance of CrAl-Ti alloys improves upon reaching the ratio Ti/Al ˃ 1. Meanwhile, the ratio Ti/Al ˂ 1 promotes the formation of corrosion products with low protective properties. The positive effect of tantalum on the HTC resistance of alloys is manifested at higher test temperatures than that of titanium, and the total content of molybdenum and tungsten in alloys is limited by the condition 8Mo2 – 2W2 = 89. The presence of refractory elements stabilizes the strengthening phase and prevents formation of the ɳ-phase. However, their excess promotes formation of the embrittling topologically close packed (TCP) phases and boundary carbides of an unfavorable morphology. Based on the studies of the HTC resistance, there has been identified a class of model high-temperature corrosionresistant nickel alloys with a moderate or high chromium content (30%), Ti/Al ˃ 1, and a balanced content of refractory and rare-earth elements.


2017 ◽  
Vol 209 ◽  
pp. 581-584 ◽  
Author(s):  
S. Ukai ◽  
R. Miyata ◽  
S. Kasai ◽  
N. Oono ◽  
S. Hayashi ◽  
...  

1985 ◽  
Vol 58 ◽  
Author(s):  
A. Brown ◽  
D. Raybould

ABSTRACTIn recent years, interest in high temperature aluminum alloys has increased. However, nearly all the data available is for simple extrusions. This paper looks at the properties of sheet made from a rapidly solidified Al-10Fe-2.5V-2Si alloy. The sheet is made by direct forging followed by hot rolling, this is readily scalable, so allowing the production of large sheet. The room temperature strength and fracture toughness of the sheet are comparable to those of 2014-T6. The high temperature strength, specific stiffness and corrosion resistance are excellent. Recently, improved thermomechanical processing and new alloys have allowed higher strengths and fracture toughness values to be obtained.


2012 ◽  
Vol 550-553 ◽  
pp. 2676-2679
Author(s):  
Yury A. Minaev

The thermodynamic analysis of stability conditions was carried out for disperse heterophase systems obtained by a method of NSP put in metal melts for high-temperature strength of the nickel alloys. For a thermodynamic criterion (К) of stability was selected the specific variation of a free energy of the process of a disperse system degradation (referred to unit of a surface phases contact change). The analysis was carried out in view of formation of thick and thin elastic wetting films and takes in account a disjoining pressure. Obtained new thermodynamically rigorous criterions can be used, if the isotherm of a disjoining pressure is measured. The derived criterions are simplified in the Young approximation. In this case the criterion are expressed through measurable interfacial performances - interfacial tension and wetting angles. The application of a stability condition gives a simple outcome: aggregation of NSP does not happen at a wetting angles ≤ 750. On a basis of own experimental data the evaluations are carried out for possibility of using of some compounds as exogenous modifiers of a nickel alloys. The example of dispersion hardening of high-temperature strength nickel alloy is reduced.


It is now well established that the strength and stiffness of materials such as epoxy resins and aluminium can be increased by the incorporation of suitable fibres. However, relatively little effort has been made to improve similarly the high temperature strength of materials intended for service above ca . 800°C. This paper is introduced with a general examination of fibre/matrix systems that offer improved high temperature capability over current materials, with reference to gas turbine blade applications. The importance of properties and characteristics that influence the selection of suitable fibre and matrix combinations, for example, density, strength, oxidation resistance and compatibility, are discussed. Experi­mental work on the strength of potentially useful fibres such as refractory metal and alumina filaments, their incorporation into nickel-base alloy matrices using vacuum-casting techniques, and the evaluation of composites are described. In terms of the measured properties and of strength predictions based on fibre and matrix data, the merits and limitations of composites relative to well-developed alloys strengthened by precipitation mechanisms are considered.


2008 ◽  
Vol 595-598 ◽  
pp. 779-787
Author(s):  
Georg Kunschert ◽  
Hans Peter Martinz ◽  
Michael Schütze

In recent years solid-oxide fuel cell (SOFC) interconnect components have proven to be a key-component accountable for the functionality of high temperature fuel cells. Amongst adequate thermal expansion and high temperature strength, highest oxidation resistance in anode and cathode gases under thermal cycling conditions is required in order to reach long term durability, particularly when using thin film light-weight components with particular focus on automotive applications. In order to match the challenging parameter profile Plansee developed the mechanically alloyed ITM, a ferritic P/M Fe26Cr alloy strengthened with additions of Y2O3 dispersoids, since it has been observed that apart from their HT strengthening effect, which is of specific interest for thin sheets components, finest ODS particles reduce the growth and enhance the adhesion of the forming oxide layers. The latter effect is of particular interest in applications where alloys are exposed to HT cyclic conditions. In this work the nucleation phase of the oxide scale formation on P/M ODS Fe26Cr ITM is compared to that on a reference ingot steel Fe22Cr in typical anode gases containing significant amounts of H2, CO and approximately 3% H2O as well as in laboratory air at 850°C. Thermal cycling oxidation tests following the COTEST standard up to 168h are carried out in both environments. Moreover cyclic oxidation tests are performed in dry anode gas. Detailed studies of oxide scale formation and evolution by means of electron microscopy of cross sections as well as oxide surfaces are undertaken.


1985 ◽  
Vol 27 (1) ◽  
pp. 24-28
Author(s):  
V. P. Lesnikov ◽  
V. P. Kuznetsov ◽  
M. V. Kukhtin ◽  
Yu. A. Belykh ◽  
Yu. O. Goroshenko

Sign in / Sign up

Export Citation Format

Share Document