High-temperature anelasticity and elasticity of mantle peridotite

1979 ◽  
Vol 20 (1) ◽  
pp. 48-59 ◽  
Author(s):  
H. Berckhemer ◽  
F. Auer ◽  
J. Drisler
1994 ◽  
Vol 9 (1) ◽  
pp. 63-67 ◽  
Author(s):  
G. Artioli ◽  
M. Bellotto ◽  
B. Palosz

A natural olivine sample from a mantle peridotite xenolith has been studied by in situ high-temperature powder diffraction. The structure has been successfully refined from powder data at three temperatures (25, 600, and 800 °C) using the Rietveld method. The study shows that the full-profile technique is well suited for the structure analysis of high-temperature powder diffraction data. The results indicate that, in this temperature range, there is no significant ordering of the Fe,Mg cations in the two crystallographically independent octahedral sites. This has implications for the thermodynamic modeling of olivine at upper mantle conditions. The present experiments allowed measurement of the lattice thermal expansion of olivine in the temperature range 25–800 °C, and assessment of the temperature dependence of the isotropic atomic displacement parameters.


2019 ◽  
Vol 60 (8) ◽  
pp. 1575-1620 ◽  
Author(s):  
Allan H Wilson

Abstract The c.3·3 Ga Commondale komatiites located south of the Barberton greenstone belt in the Kaapvaal Craton are different from other komatiites, possessing compositional and textural features unique to this occurrence. Unlike almost all other known komatiite occurrences, they are not associated with komatiitic basalts or basalts. The komatiite flows are 0·5–25 m thick and are made up of a marginal zone of spinifex-textured and fine-grained aphyric rocks (low-Mg group) and an inner zone of olivine cumulates (high-Mg group), arranged in such a way to give highly symmetrical compositional profiles for many flows. Olivine is the dominant phase in all rocks, but orthopyroxene occurs as spinifex and elongate laths in the marginal zone. Clinopyroxene and plagioclase are entirely absent. The olivine cumulates formed from Mg-rich magma (36·1% MgO, 6·8% FeO) which caused inflation of the thicker flows. The maximum observed olivine composition in cores (Fo 96·6) is the highest recorded for any komatiite worldwide. The high-Mg magma would have erupted at a temperature close to 1670°C, the highest inferred temperature for an anhydrous terrestrial lava. The marginal zone is enriched in incompatible elements compared with the inner zone and formed by fractionation of the parental melt. However, all rock-types in the marginal zone are depleted in FeO (some as low as 3·5%) which could not have been derived by any primary magmatic process. The marginal zone rocks were modified by assimilation and/or alteration by seawater (or brine) components causing migration of iron and strong enrichment of sodium (up to 1·6 wt % Na2O) and chlorine (up to 2400 ppm). Zirconium has an identical distribution to sodium, with both elements greatly enriched above what would result from fractional crystallization, and may result from speciation of these elements at high temperature followed by post-crystallization alteration. Rare earth elements, Y and Nb have contents commensurate with fractionation of the primitive parental magma. Dendritic-textured olivine-rich rocks with orthopyroxene spinifex spatially and compositionally transitional between the marginal zone and the olivine cumulates resulted from interaction of the high temperature parental magma in the centre of the flows with the fractionated melt at the flow margins. A further manifestation of this association is the development of highly regular fine-scale (5–15 cm) layering (up to 45 layers) of alternating olivine cumulate and spinifex near the base of thick flows. This is overlain by olivine cumulates in which the melt/crystal-mush became arranged into a 3-dimensional network controlled by re-distribution of the trapped melt manifest by a spectacular knobbly texture in outcrop. Over 200 flow units are recognized and detailed chemical and mineralogical studies were carried out on drill cores intersecting 375 m of stratigraphy. The parental magma was highly depleted (in ppm Nb 0·017, Zr 1·18, total REE 1·7 and Gd/YbN=0·3, La/YbN=0·038) and although generally regarded to fall into the rare category of Al-enriched komatiites (AEKs), it is considered that these lavas are a unique class of their own of ultra-depleted komatiites. Relative to other AEKs the Commondale komatiites are both enriched in Al as well as being markedly depleted in Ti (390 ppm), giving rise to the extremely high Al2O3/TiO2 (81). The high temperature and low viscosity of the magma resulted in emplacement processes previously unrecognized in komatiites. The primary melt was derived by melting of mantle peridotite in equilibrium with olivine and orthopyroxene. The initial source was depleted in incompatible elements by small degrees of melting (3–4%) followed by high degrees of partial melting (70%) of the subsequent refractory source at 5 GPa (∼150 km).


Author(s):  
M.S. Grewal ◽  
S.A. Sastri ◽  
N.J. Grant

Currently there is a great interest in developing nickel base alloys with fine and uniform dispersion of stable oxide particles, for high temperature applications. It is well known that the high temperature strength and stability of an oxide dispersed alloy can be greatly improved by appropriate thermomechanical processing, but the mechanism of this strengthening effect is not well understood. This investigation was undertaken to study the dislocation substructures formed in beryllia dispersed nickel alloys as a function of cold work both with and without intermediate anneals. Two alloys, one Ni-lv/oBeo and other Ni-4.5Mo-30Co-2v/oBeo were investigated. The influence of the substructures produced by Thermo-Mechanical Processing (TMP) on the high temperature creep properties of these alloys was also evaluated.


Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.


Author(s):  
E. R. Kimmel ◽  
H. L. Anthony ◽  
W. Scheithauer

The strengthening effect at high temperature produced by a dispersed oxide phase in a metal matrix is seemingly dependent on at least two major contributors: oxide particle size and spatial distribution, and stability of the worked microstructure. These two are strongly interrelated. The stability of the microstructure is produced by polygonization of the worked structure forming low angle cell boundaries which become anchored by the dispersed oxide particles. The effect of the particles on strength is therefore twofold, in that they stabilize the worked microstructure and also hinder dislocation motion during loading.


Sign in / Sign up

Export Citation Format

Share Document