scholarly journals Black Carbon Amplifies Haze Over the North China Plain by Weakening the East Asian Winter Monsoon

2019 ◽  
Vol 46 (1) ◽  
pp. 452-460 ◽  
Author(s):  
Sijia Lou ◽  
Yang Yang ◽  
Hailong Wang ◽  
Steven J. Smith ◽  
Yun Qian ◽  
...  
2020 ◽  
Vol 33 (24) ◽  
pp. 10671-10690
Author(s):  
Tianjiao Ma ◽  
Wen Chen ◽  
Hans-F. Graf ◽  
Shuoyi Ding ◽  
Peiqiang Xu ◽  
...  

AbstractThe present study investigates different impacts of the East Asian winter monsoon (EAWM) on surface air temperature (Ts) in North America (NA) during ENSO and neutral ENSO episodes. In neutral ENSO years, the EAWM shows a direct impact on the Ts anomalies in NA on an interannual time scale. Two Rossby wave packets appear over the Eurasian–western Pacific (upstream) and North Pacific–NA (downstream) regions associated with a strong EAWM. Further analysis suggests that the downstream wave packet is caused by reflection of the upstream wave packet over the subtropical western Pacific and amplified over the North Pacific. Also, the East Asian subtropical westerly jet stream (EAJS) is intensified in the central and downstream region over the central North Pacific. Hence, increased barotropic kinetic energy conversion and the interaction between transient eddies and the EAJS tend to maintain the circulation anomaly over the North Pacific. Therefore, a strong EAWM tends to result in warm Ts anomalies in northwestern NA via the downstream wave packet emanating from the central North Pacific toward NA. A weak EAWM tends to induce cold Ts anomalies in western-central NA with a smaller magnitude. However, in ENSO years, an anomalous EAJS is mainly confined over East Asia and does not extend into the central North Pacific. The results confirm that the EAWM has an indirect impact on the Ts anomalies in NA via a modulation of the tropical convection anomalies associated with ENSO. Our results indicate that, for seasonal prediction of Ts anomalies in NA, the influence of the EAWM should be taken into account. It produces different responses in neutral ENSO and in ENSO years.


2017 ◽  
Vol 122 (11) ◽  
pp. 5883-5902 ◽  
Author(s):  
Yiquan Jiang ◽  
Xiu‐Qun Yang ◽  
Xiaohong Liu ◽  
Dejian Yang ◽  
Xuguang Sun ◽  
...  

2016 ◽  
Vol 16 (16) ◽  
pp. 10441-10454 ◽  
Author(s):  
Liang Ran ◽  
Zhaoze Deng ◽  
Xiaobin Xu ◽  
Peng Yan ◽  
Weili Lin ◽  
...  

Abstract. Black carbon (BC) is a dominant absorber in the visible spectrum and a potent factor in climatic effects. Vertical profiles of BC were measured using a micro-aethalometer attached to a tethered balloon during the Vertical Observations of trace Gases and Aerosols (VOGA) field campaign, in summer 2014 at a semirural site in the North China Plain (NCP). The diurnal cycle of BC vertical distributions following the evolution of the mixing layer (ML) was investigated for the first time in the NCP region. Statistical parameters including identified mixing height (Hm) and average BC mass concentrations within the ML (Cm) and in the free troposphere (Cf) were obtained for a selected dataset of 67 vertical profiles. Hm was usually lower than 0.2 km in the early morning and rapidly rose thereafter due to strengthened turbulence. The maximum height of the ML was reached in the late afternoon. The top of a full developed ML exceeded 1 km on sunny days in summer, while it stayed much lower on cloudy  days. The sunset triggered the collapse of the ML, and a stable nocturnal boundary layer (NBL) gradually formed. Accordingly, the highest level Cm was found in the early morning and the lowest was found in the afternoon. In the daytime, BC was almost uniformly distributed within the ML and significantly decreased above the ML. During the field campaign, Cm averaged about 5.16 ± 2.49 µg m−3, with a range of 1.12 to 14.49 µg m−3, comparable with observational results in many polluted urban areas such as Milan in Italy and Shanghai in China. As evening approached, BC gradually built up near the surface and exponentially declined with height. In contrast to the large variability found both in Hm and Cm, Cf stayed relatively unaffected through the day. Cf was less than 10 % of the ground level under clean conditions, while it amounted to half of the ground level in some polluted cases. In situ measurements of BC vertical profiles would hopefully have an important implication for accurately estimating direct radiative forcing by BC and improving the retrieval of aerosol optical properties by remote sensing in this region.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhang Chen ◽  
Renguang Wu ◽  
Zhibiao Wang

The present study investigates the impacts of autumn-winter Tibetan Plateau (TP) snow cover anomalies on the interannual variability of the East Asian winter monsoon (EAWM). It is found that the northern component of EAWM is significantly associated with October-November-December-January (ONDJ) snow cover anomalies over the eastern TP, whereas the TP snow cover changes have little impact on the southern component of EAWM. However, the relationship of the northern component of EAWM to ONDJ TP snow cover experienced an obvious change in the mid-1990s. During 1979–1998, due to the high persistence of TP snow anomalies from autumn to winter, extensive ONDJ TP snow cover anomalies have a prominent influence on atmospheric circulation over Asia and the North Pacific, with more TP snow cover followed by an enhanced Siberian high and a deepened Aleutian low in winter, resulting in stronger EAWM. During 1999–2016, TP snow cover anomalies have a weak persistence. The atmospheric circulation anomalies display a different distribution. As such, there is a weak connection between the northern component of EAWM and the TP snow cover anomalies during this period.


2014 ◽  
Vol 27 (21) ◽  
pp. 8185-8204 ◽  
Author(s):  
Gyundo Pak ◽  
Young-Hyang Park ◽  
Frederic Vivier ◽  
Young-Oh Kwon ◽  
Kyung-Il Chang

Abstract The East Asian winter monsoon (EAWM) and the North Pacific Oscillation (NPO) constitute two outstanding surface atmospheric circulation patterns affecting the winter sea surface temperature (SST) variability in the western North Pacific. The present analyses show the relationship between the EAWM and NPO and their impact on the SST are nonstationary and regime-dependent with a sudden change around 1988. These surface circulation patterns are tightly linked to the upper-level Ural and Kamchatka blockings, respectively. During the 1973–87 strong winter monsoon epoch, the EAWM and NPO were significantly correlated to each other, but their correlation practically vanishes during the 1988–2002 weak winter monsoon epoch. This nonstationary relationship is related to the pronounced decadal weakening of the Siberian high system over the Eurasian continent after the 1988 regime shift as well as the concomitant positive NPO-like dipole change and its eastward migration in tropospheric circulation over the North Pacific. There is a tight tropical–extratropical teleconnection in the western North Pacific in the strong monsoon epoch, which disappears in the weak monsoon epoch when there is a significant eastward shift of tropical influence and enhanced storm tracks into the eastern North Pacific. A tentative mechanism of the nonstationary relationship between the EAWM and NPO is proposed, stressing the pivotal role played in the above teleconnection by a decadal shift of the East Asian trough resulting from the abrupt decline of the EAWM since the late 1980s.


Sign in / Sign up

Export Citation Format

Share Document