scholarly journals Impact of Autumn-Winter Tibetan Plateau Snow Cover Anomalies on the East Asian Winter Monsoon and Its Interdecadal Change

2021 ◽  
Vol 9 ◽  
Author(s):  
Zhang Chen ◽  
Renguang Wu ◽  
Zhibiao Wang

The present study investigates the impacts of autumn-winter Tibetan Plateau (TP) snow cover anomalies on the interannual variability of the East Asian winter monsoon (EAWM). It is found that the northern component of EAWM is significantly associated with October-November-December-January (ONDJ) snow cover anomalies over the eastern TP, whereas the TP snow cover changes have little impact on the southern component of EAWM. However, the relationship of the northern component of EAWM to ONDJ TP snow cover experienced an obvious change in the mid-1990s. During 1979–1998, due to the high persistence of TP snow anomalies from autumn to winter, extensive ONDJ TP snow cover anomalies have a prominent influence on atmospheric circulation over Asia and the North Pacific, with more TP snow cover followed by an enhanced Siberian high and a deepened Aleutian low in winter, resulting in stronger EAWM. During 1999–2016, TP snow cover anomalies have a weak persistence. The atmospheric circulation anomalies display a different distribution. As such, there is a weak connection between the northern component of EAWM and the TP snow cover anomalies during this period.

2021 ◽  
pp. 1-57
Author(s):  
Minghao Yang ◽  
Chongyin Li ◽  
Xin Li ◽  
Yanke Tan ◽  
Xiong Chen ◽  
...  

AbstractBased on the daily NCEP reanalysis, the present study investigates the interdecadal change in the relationship between the winter North Pacific storm track (WNPST) and the East Asian winter monsoon (EAWM), and evaluates the WNPST-EAWM relationship in 17 CMIP6 models. The results show that the out-of-phase WNPST-EAWM relationship underwent an interdecadal change in the mid-1980s. The WNPST-EAWM relationship became less significant during P2 (1990-2015). The atmospheric circulation anomaly related to the EAWM during P1 (1955-1980) is more robust than that during P2. The interdecadal weakening WNPST-EAWM relationship may be attributed to the interdecadal damping WNPST-EAWM interaction. The EAWM-related anomalous baroclinic energy conversion and moisture effect, including meridional and vertical eddy moisture fluxes, contribute to the significant attenuation of the WNPST during P1. The transient eddy-induced dynamic forcing and thermal forcing anomalies, as well as the barotropic process represented by the local Eliassen-Palm flux divergence associated with WNPST, can also significantly manipulate the upper-tropospheric jet during P1. However, the atmospheric circulation and interaction between the WNPST and EAWM during P2 are not as significant as those during P1. The effect of ENSO on the WNPST is significantly different before and after the mid-1980s. After the mid-1980s, the WNPST shows the characteristic of moving equatorward during El Niño events. It seems that ENSO takes over the WNPST from the EAWM after the mid-1980s. In addition, except for BCC-ESM1, CanESM5 and SAM0-UNICON, most of the CMIP6 models cannot reproduce the significant out-of-phase WNPST-EAWM relationship.


2011 ◽  
Vol 28 (4) ◽  
pp. 913-926 ◽  
Author(s):  
Gang Zeng ◽  
Wei-Chyung Wang ◽  
Zhaobo Sun ◽  
Zhongxian Li

2020 ◽  
Vol 33 (24) ◽  
pp. 10671-10690
Author(s):  
Tianjiao Ma ◽  
Wen Chen ◽  
Hans-F. Graf ◽  
Shuoyi Ding ◽  
Peiqiang Xu ◽  
...  

AbstractThe present study investigates different impacts of the East Asian winter monsoon (EAWM) on surface air temperature (Ts) in North America (NA) during ENSO and neutral ENSO episodes. In neutral ENSO years, the EAWM shows a direct impact on the Ts anomalies in NA on an interannual time scale. Two Rossby wave packets appear over the Eurasian–western Pacific (upstream) and North Pacific–NA (downstream) regions associated with a strong EAWM. Further analysis suggests that the downstream wave packet is caused by reflection of the upstream wave packet over the subtropical western Pacific and amplified over the North Pacific. Also, the East Asian subtropical westerly jet stream (EAJS) is intensified in the central and downstream region over the central North Pacific. Hence, increased barotropic kinetic energy conversion and the interaction between transient eddies and the EAJS tend to maintain the circulation anomaly over the North Pacific. Therefore, a strong EAWM tends to result in warm Ts anomalies in northwestern NA via the downstream wave packet emanating from the central North Pacific toward NA. A weak EAWM tends to induce cold Ts anomalies in western-central NA with a smaller magnitude. However, in ENSO years, an anomalous EAJS is mainly confined over East Asia and does not extend into the central North Pacific. The results confirm that the EAWM has an indirect impact on the Ts anomalies in NA via a modulation of the tropical convection anomalies associated with ENSO. Our results indicate that, for seasonal prediction of Ts anomalies in NA, the influence of the EAWM should be taken into account. It produces different responses in neutral ENSO and in ENSO years.


2017 ◽  
Vol 122 (11) ◽  
pp. 5883-5902 ◽  
Author(s):  
Yiquan Jiang ◽  
Xiu‐Qun Yang ◽  
Xiaohong Liu ◽  
Dejian Yang ◽  
Xuguang Sun ◽  
...  

2014 ◽  
Vol 27 (21) ◽  
pp. 8185-8204 ◽  
Author(s):  
Gyundo Pak ◽  
Young-Hyang Park ◽  
Frederic Vivier ◽  
Young-Oh Kwon ◽  
Kyung-Il Chang

Abstract The East Asian winter monsoon (EAWM) and the North Pacific Oscillation (NPO) constitute two outstanding surface atmospheric circulation patterns affecting the winter sea surface temperature (SST) variability in the western North Pacific. The present analyses show the relationship between the EAWM and NPO and their impact on the SST are nonstationary and regime-dependent with a sudden change around 1988. These surface circulation patterns are tightly linked to the upper-level Ural and Kamchatka blockings, respectively. During the 1973–87 strong winter monsoon epoch, the EAWM and NPO were significantly correlated to each other, but their correlation practically vanishes during the 1988–2002 weak winter monsoon epoch. This nonstationary relationship is related to the pronounced decadal weakening of the Siberian high system over the Eurasian continent after the 1988 regime shift as well as the concomitant positive NPO-like dipole change and its eastward migration in tropospheric circulation over the North Pacific. There is a tight tropical–extratropical teleconnection in the western North Pacific in the strong monsoon epoch, which disappears in the weak monsoon epoch when there is a significant eastward shift of tropical influence and enhanced storm tracks into the eastern North Pacific. A tentative mechanism of the nonstationary relationship between the EAWM and NPO is proposed, stressing the pivotal role played in the above teleconnection by a decadal shift of the East Asian trough resulting from the abrupt decline of the EAWM since the late 1980s.


2014 ◽  
Vol 27 (2) ◽  
pp. 835-851 ◽  
Author(s):  
Zhang Chen ◽  
Renguang Wu ◽  
Wen Chen

Abstract The East Asian winter monsoon (EAWM)-related climate anomalies have shown large year-to-year variations in both the intensity and the meridional extent. The present study distinguishes the interannual variations of the low-latitude and mid- to high-latitude components of the EAWM to gain a better understanding of the characteristics and factors for the EAWM variability. Through composite analysis based on two indices representing the northern and southern components (modes) of the EAWM variability, the present study clearly reveals features unique to the northern and southern mode. The northern mode is associated with changes in the mid- to high-latitude circulation systems, including the Siberian high, the Aleutian low, the East Asian trough, and the East Asian westerly jet stream, whereas the southern mode is closely related to circulation changes over the global tropics, the North Atlantic, and North America. A strong northern mode is accompanied by positive, negative, and positive surface temperature anomalies in the Indochina Peninsula, midlatitude Asia, and northeast Russia, respectively. A strong southern mode features lower temperature over tropics and higher temperature over mid- to high-latitude Asia. While the southern mode is closely related to El Niño–Southern Oscillation (ENSO), the northern mode does not show an obvious relation to the tropical sea surface temperature (SST) change or to the North Atlantic Oscillation (NAO)/Arctic Oscillation (AO) on the interannual time scale. Distinct snow cover and sea ice changes appear as responses to wind and surface temperature changes associated with the two modes and their effects on the EAWM variability need to be investigated in the future.


2009 ◽  
Vol 22 (3) ◽  
pp. 600-614 ◽  
Author(s):  
Lin Wang ◽  
Wen Chen ◽  
Wen Zhou ◽  
Ronghui Huang

Abstract Interannual variations of the East Asian trough (EAT) axis at 500 hPa are studied with the European Centre for Medium-Range Weather Forecasts 40-yr reanalysis data. The associated circulation pattern and pathway of the East Asian winter monsoon (EAWM) with the EAT axis tilt are specially investigated with a trough axis index, which is closely related to the midlatitude baroclinic process and mainly represents the intensity of the eddy-driven jet over the East Asia–North Pacific sector. When the tilt of EAT is smaller than normal, the EAWM prefers to take the southern pathway and less cold air moves to the central North Pacific. However, the EAWM prefers the eastern pathway and brings more cold air to the North Pacific when the tilt of EAT is larger than normal. These differences induce pronounced changes in both the precipitation and the surface air temperature over East and Southeast Asia. Furthermore, the tilt status of the EAT has a significant modulation effect on the regional climate anomalies related to the intensity of the EAWM. The findings suggest an increase in the temperature anomaly associated with the EAWM intensity and a clear northward–southward shift in its pattern in anomalous tilt phase of the EAT. In addition, the modulation tends to be confined mainly to East Asia and expanded to a larger area during the weak and the strong EAWM winters, respectively. The possible reasons for interannual variations of the EAT tilt are discussed, and it is speculated that the midlatitude air–sea interaction in the North Pacific plays a dominant role. This study on the EAT tilt may enrich knowledge of the East Asian winter monsoon beyond the conventional intensity index and may be helpful to improve regional climate prediction in East Asia.


Sign in / Sign up

Export Citation Format

Share Document