Partial Melting of Mixed Sediment‐Peridotite Mantle Source and Its Implications

2019 ◽  
Vol 124 (7) ◽  
pp. 6490-6503
Author(s):  
Yanfei Zhang ◽  
Chao Wang ◽  
Lüyun Zhu ◽  
Zhenmin Jin ◽  
Wei Li

The alkaline rocks of Carboniferous to Permian age in the Midland Valley province range in composition from hypersthene-normative, transitional basalts to strongly undersaturated basanitic and nephelinitic varieties. They were formed by varying degrees of equilibrium partial melting of a phlogopite peridotite mantle. Ba, Ce, Nb, P, Sr and Zr were strongly partitioned into the liquid during melting; K and Rb were retained by residual phlogopite for small degrees of melting only. The composition of the mantle source is inferred to have been broadly similar to that from which oceanic alkaline basalts are currently being generated. It was, however, heterogeneous as regards distribution of the incompatible trace elements, with up to fourfold variations in elemental abundances and ratios. The mantle beneath the province may be divisible into several areas, of some hundreds of square kilometres each, which retained a characteristic incompatible element chemistry for up to 50 Ma and which imparted a distinctive chemistry to all the basic magmas generated within them.


2020 ◽  
Author(s):  
Ercan Aldanmaz ◽  
Aykut Güçtekin ◽  
Özlem Yıldız-Yüksekol

<p>The Late Triassic basaltic rocks that are dispersed as several lava sheets in a number of different tectonic slices within the Antalya nappes in SW Turkey represent the remnants of widespread oceanic magmatism with strong intra-plate geochemical signatures. The largest exposures are observed around the Antalya Bay, where pillow structured or massif lava flows are interlayered with Upper Triassic pelagic or carbonate platform sediments. Based on bulk-rock geochemical characteristics, the rocks mostly classify as alkaline basalts and display distinctive OIB-type trace element distributions characterized by significant enrichments in LILE and HFSE abundances, as well as LREE/HREE ratios, with respect to average N-MORB. Quantitative modeling of trace element data suggest that the primary melts that produced the alkaline lavas are largely the products of variable proportions of mixing between melts generated by variable, but generally low (<10) degrees of partial melting of more than one compositionally distinct mantle source. The samples, as a whole, display large variations in radiogenic isotope ratios with <sup>87</sup>Sr/<sup>86</sup>Sr = 0.703021–0.70553, <sup>143</sup>Nd/<sup>144</sup>Nd = 0.51247–0.51279, <sup>206</sup>Pb/<sup>204</sup>Pb = 18.049–20.030, <sup>207</sup>Pb/<sup>204</sup>Pb = 15.544–15.723 and <sup>208</sup>Pb/<sup>204</sup>Pb = 38.546–39.530. Such variations in isotopic ratios correlate with the change in incompatible trace element relative abundances and reflect the involvement of a number of compositionally distinct mantle end-members. These include EMI and EMII type enriched mantle components both having lower <sup>143</sup>Nd/<sup>144</sup>Nd than typical depleted MORB source with their contrasting low and high <sup>206</sup>Pb/<sup>204</sup>Pb and <sup>20</sup><sup>7</sup>Pb/<sup>204</sup>Pb ratios respectively, as well as a high time-integrated <sup>238</sup>U/<sup>204</sup>Pb component with high <sup>206</sup>Pb/<sup>204</sup>Pb at relatively low <sup>87</sup>Sr/<sup>86</sup>Sr and εNd values. The results from trace element and radiogenic isotope data are consistent with the view that the initial melt generation was likely related to partial melting of the shallow convecting upper mantle in response to Triassic rifting events, while continued mantle upwelling resulted in progressively increased melting of mantle lithosphere that contained compositionally contrasting lithological domains with strong isotopic heterogeneities.</p>


Geologos ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 51-64
Author(s):  
Mohammad Boomeri ◽  
Rahele Moradi ◽  
Sasan Bagheri

AbstractThe Oligocene Lar igneous complex is located in the Sistan suture zone of Iran, being emplaced in Paleocene to Eocene flysch-type rocks. This complex includes mainly intermediate K-rich volcanic (trachyte, latite and andesite) and plutonic (syenite and monzonite) rocks that belong to shoshonitic magma. The geochemical characteristics of the Lar igneous complex, such as an enrichment of LREE and LILE relative to HREE and HFSE, respectively, a negative anomaly of Ti, Ba and Nb and a positive anomaly of Rb and Th are similar to those of arc-type igneous rocks. Tectonic discrimination diagrams also show that rocks of the Lar igneous complex fall within the arc-related and post-collisional fields and K-enrichment of these rocks confirm the post-collisional setting. Based on geochemical features, the Lar igneous complex magma was derived from partial melting of a phlogopite-bearing, enriched and metasomatised lithospheric mantle source and the magma was affected by some evolutionary processes like fractional crystallisation and crustal contamination.


2021 ◽  
Vol 353 ◽  
pp. 105971
Author(s):  
Holger Sommer ◽  
Alfred Kröner ◽  
Dorrit E. Jacob ◽  
Xiao-chao Che ◽  
Jean Wong ◽  
...  

2021 ◽  
Author(s):  
Bing Zhao ◽  
Xijun Liu ◽  
Zhenglin Li ◽  
Wenmin Huang ◽  
Chuan Zhao

<p>The Emeishan flood basalts are part of an important large igneous province along the western margin of the Yangtze Block, Southwest China. The western Guangxi region in southwestern China is geologically a part of the Yangtze Block. Mafic rocks, comprising mainly lavas and dykes in western Guangxi belong to the outer part of the ~260 Ma Emeishan Large Igneous Province (ELIP). Here we present a systematic study of platinum-group elements (PGEs) combined with the LA-ICP-MS zircon U–Pb age, whole-rock geochemical and isotopic data of the lavas and dykes in the Longlin area of outer zone of ELIP to constraints on their origin. On the basis of petrography and major elements characteristics, mafic lavas and dykes display an enrichment of LREE, LILE, HFSE, high (<sup>87</sup>Sr/<sup>86</sup>Sr)<sub>i</sub> ratios (0.704227~0.705754), low ε<sub>Nd</sub><sub>(t)</sub> values(0.42~0.99), high ε<sub>Hf</sub><sub>(t)</sub> values(5.19~6.04), they are similar to those of Permian Emeishan high-Ti basalts and Ocean island basalts (OIB) features. The Longlin mafic rocks was formed in the Late Permian with the zircon U-Pb dated age of 256.3± 1.7 Ma. The age of the Longlin mafic rocks is close to the formation age of the ELIP large-scale magmatism, suggesting that these lavas and dykes probably belongs to part of the ELIP large-scale magmatism. The Longlin mafic rocks have low total PGE contents ranging from 1.56×10<sup>-9 </sup>to 2.28×10<sup>-9</sup>, with Os, Ir, Ru, Rh, Pt and Pd contents of 0.040~0.076, 0.046~0.076, 0.027~0.079, 0.037~0.056, 0.6374~1.053 and 0.715~1.021ppb, respectively. They show left-leaning primitive mantle-normalized PGE patterns with depletion in Iridium group(IPGE) and enrichment in Palladium group, which also have lower contents than mafic rocks from the inner zone of the ELIP, suggesting that a low degree of partial melting of the mantle source plays an important role. The Longlin mafic rocks exhibit a marked increase in Cu/Pd ratios (>10<sup>5</sup>,84655 to 174785) albeit with a narrow range of lower Pd/Ir ratios (<50,13.4 to 18.7), different from the PGE-enriched basalts of the Siberian Traps, Emeishan Large Igneous Province (ELIP), East Greenland CFBs and Deccan Traps, indicating that their parent magmas was significantly depleted in chalcophile elements. Calculations based on the available trace element geochemistry reveal that the basalts were originated by low degree of partial melting(<5%),with sulfides remain in the mantle during partial melting. Sulfide segregation could not happen during the evolution of the Longlin mafic rocks, due to the fact that neither significant fractional crystallization nor crustal contamination has been involved in their formation. Overall, mafic rocks from the outer zone of the ELIP show lower PGE contents than those in the inner zones, we find that the PGE contents in igneous rocks are related with the degrees of partial melting in the mantle source and the removal of sulfides before their emplacement.</p><p>This study was financially supported by the Guangxi Natural Science Foundation for Distinguished Young Scholars (2018GXNSFFA281009) and the Fifth Bagui Scholar Innovation Project of Guangxi Province (to XU Ji-feng).</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Charles W. Messo ◽  
Shukrani Manya ◽  
Makenya A. H. Maboko

The Neoarchaean volcanic rocks of the Kilimafedha greenstone belt consist of three petrological types that are closely associated in space and time: the predominant intermediate volcanic rocks with intermediate calc-alkaline to tholeiitic affinities, the volumetrically minor tholeiitic basalts, and rhyolites. The tholeiitic basalts are characterized by slightly depleted LREE to nearly flat REE patterns with no Eu anomalies but have negative anomalies of Nb. The intermediate volcanic rocks exhibit very coherent, fractionated REE patterns, slightly negative to absent Eu anomalies, depletion in Nb, Ta, and Ti in multielement spidergrams, and enrichment of HFSE relative to MORB. Compared to the other two suites, the rhyolites are characterized by low concentrations of TiO2 and overall low abundances of total REE, as well as large negative Ti, Sr, and Eu anomalies. The three suites have a εNd (2.7 Ga) values in the range of −0.51 to +5.17. The geochemical features of the tholeiitic basalts are interpreted in terms of derivation from higher degrees of partial melting of a peridotite mantle wedge that has been variably metasomatized by aqueous fluids derived from dehydration of the subducting slab. The rocks showing intermediate affinities are interpreted to have been formed as differentiates of a primary magma formed later by lower degrees of partial melting of a garnet free mantle wedge that was strongly metasomatized by both fluid and melt derived from the subducting oceanic slab. The rhyolites are best interpreted as having been formed by shallow level fractional crystallization of the intermediate volcanic rocks involving plagioclase and Ti-rich phases like ilmenite and magnetite as well as REE-rich phases like apatite, zircon, monazite, and allanite. The close spatial association of the three petrological types in the Kilimafedha greenstone belt is interpreted as reflecting their formation in an evolving late Archaean island arc.


2008 ◽  
Vol 145 (5) ◽  
pp. 685-701 ◽  
Author(s):  
NANCY A. LEASE ◽  
ABDEL-FATTAH M. ABDEL-RAHMAN

AbstractThe Plio-Quaternary Euphrates volcanic field of NE Syria includes large discontinuous exposures of basanitic and basaltic lava flows (1200 km2 in area). It represents the northern segment of the Cenozoic volcanic province of the Middle East and is located near the Bitlis collision suture. The rocks consist of olivine (15–20%), clinopyroxene (30–35%), plagioclase (45–55%) and opaque phases. Chemically, the rocks are largely ultrabasic (SiO2 38.2–45.5 wt%, MgO 8.7–13.0 wt% and average Mg number of 0.65). They are enriched in incompatible trace elements such as Zr (133–276 ppm), Nb (25–71 ppm) and Y (17–28 ppm). The REE patterns are strongly fractionated ((La/Yb)N = 19.6), indicative of a garnet-bearing source. The 143Nd/144Nd isotopic compositions range from 0.512868 to 0.512940 (εNd = 4.5 to 5.9), and 87Sr/86Sr from 0.70309 to 0.70352. These chemical and isotopic compositions reflect strong affinities to OIB. Elemental ratios such as K/P (3.4), La/Ta (13) and La/Nb (0.77), and the low SiO2 values, suggest that the Euphrates magma was subjected to minimal crustal contamination. Petrogenetic modelling has been carried out using a variety of mantle source materials, different degrees of partial melting (0.1 to 10%), and a number of scenarios including metasomatized sources. Modelling suggests that the magma could have been produced as a result of a small degree of partial melting of either (1) a garnet-bearing depleted source enriched with a small addition of metasomatizing fluids, or (2) a garnet-bearing fertile source. The overall chemical and petrological characteristics are more consistent with the generation of the Euphrates magma by a small degree of partial melting (F = 1%) of a primitive, garnet-lherzolite mantle source, possibly containing a minor spinel component. The Neogene collision of the Arabian plate with Eurasia along the Bitlis suture resulted in reactivation (beneath the Euphrates basin) of deep-seated fractures, along which lavas may have penetrated the crust.


Sign in / Sign up

Export Citation Format

Share Document