Impacts of ENSO and IOD on Snow Depth Over the Tibetan Plateau: Roles of Convections Over the Western North Pacific and Indian Ocean

2019 ◽  
Vol 124 (22) ◽  
pp. 11961-11975 ◽  
Author(s):  
Xingwen Jiang ◽  
Tuantuan Zhang ◽  
Chi‐Yung Tam ◽  
Junwen Chen ◽  
Ngar‐Cheung Lau ◽  
...  
2020 ◽  
Author(s):  
Tuantuan Zhang ◽  
Xingwen Jiang ◽  
Chi-Yung Tam ◽  
Junwen Chen ◽  
Ngar-Cheung Lau ◽  
...  

<p>This is a consensus that snow over the Tibetan Plateau (TP) modulates the regional climate significantly. Possible causes for the interannual variability of snow over the TP, however, are under debate, especially regarding the independent roles of El Niño-Southern (ENSO) and Indian Ocean dipole (IOD). Based on in-situ observational data analyses and model simulations, our study shows that impacts of ENSO and IOD on snow depth (SD) over the TP are different during early winter. In particular, ENSO mostly affects SD over the eastern TP, while IOD affects SD over the central-western TP. Both above-normal snowfall and cold temperature anomaly contribute to deeper-than-normal SD, with the former playing a more important role. Diabatic cooling of the suppressed convection over the western North Pacific that related to the positive phase of ENSO could excite an anomalous cyclonic circulation and strong cold temperature anomalies over the eastern TP. There is an enhanced moisture transported over the eastern TP from the tropics due to the anomalous cyclonic circulation; along with strong cold temperature anomalies, resulting in above-normal snowfall in the eastern TP. On the other hand, anomalous convection over the western Indian Ocean related to the positive IOD could generate a wave-train propagating northeastward and induce an anomalous cyclonic circulation over the central-western TP. The associated anomalous circulation transports extra moisture from the tropics to the central-western TP, providing conditions favorable for more snowfall over the central-western TP. Opposite conditions tend to occur during negative phases of ENSO and IOD.</p>


2022 ◽  
pp. 1-45
Author(s):  
Xiang Han ◽  
Haikun Zhao ◽  
Philip J. Klotzbach ◽  
Liguang Wu ◽  
Graciela B. Raga ◽  
...  

Abstract This study finds an enhanced relationship in recent years between January–March eastern Tibetan Plateau snow depth (TPSD) and the frequency of rapidly intensifying tropical cyclones (RITCs) over the western Northern Pacific (WNP) during the following peak TC season (July–November). The correlation between TPSD and RITCs is significant during 2000–2014 but was insignificant from 1979–1999. During 2000–2014, when TPSD increases, there is an enhanced low-level anomalous anticyclone over the subtropical eastern North Pacific mainly due to the combined effect of advection and dynamics of the climatological prevailing westerly jet. Northeasterly wind anomalies are observed on the flank of the anticyclonic circulation anomaly, favoring anomalously cool sea surface temperature (SST). These anomalies lead to an anomalous pattern similar to the Pacific meridional mode (PMM), via a wind-evaporation feedback and cold advection. A Gill-type Rossby response to the PMM-like negative phase results in an anticyclonic circulation anomaly over the WNP, suppressing RITCs during 2000–2014. A nearly opposite circulation anomaly occurred when TPSD was lower during 2000–2014. There is a weak relationship between TPSD and RITCs, due to the lack of a link between TPSD and the PMM-like pattern from 1979–1999. Decadal changes in the relationship between TPSD and RITCs are mainly due to the meridional displacement of the prevailing westerly jet which may be in response to decadal-to-multi-decadal variability of SST anomalies. These changes then result in changes in the relationship between January–March TPSD and the PMM-like pattern.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 307
Author(s):  
Chi Zhang ◽  
Naixia Mou ◽  
Jiqiang Niu ◽  
Lingxian Zhang ◽  
Feng Liu

Changes in snow cover over the Tibetan Plateau (TP) have a significant impact on agriculture, hydrology, and ecological environment of surrounding areas. This study investigates the spatio-temporal pattern of snow depth (SD) and snow cover days (SCD), as well as the impact of temperature and precipitation on snow cover over TP from 1979 to 2018 by using the ERA5 reanalysis dataset, and uses the Mann–Kendall test for significance. The results indicate that (1) the average annual SD and SCD in the southern and western edge areas of TP are relatively high, reaching 10 cm and 120 d or more, respectively. (2) In the past 40 years, SD (s = 0.04 cm decade−1, p = 0.81) and SCD (s = −2.3 d decade−1, p = 0.10) over TP did not change significantly. (3) The positive feedback effect of precipitation is the main factor affecting SD, while the negative feedback effect of temperature is the main factor affecting SCD. This study improves the understanding of snow cover change and is conducive to the further study of climate change on TP.


2018 ◽  
Vol 32 (1) ◽  
pp. 213-230 ◽  
Author(s):  
Chao He ◽  
Tianjun Zhou ◽  
Tim Li

Abstract The western North Pacific subtropical anticyclone (WNPAC) is the most prominent atmospheric circulation anomaly over the subtropical Northern Hemisphere during the decaying summer of an El Niño event. Based on a comparison between the RCP8.5 and the historical experiments of 30 coupled models from the CMIP5, we show evidence that the anomalous WNPAC during the El Niño–decaying summer is weaker in a warmer climate although the amplitude of the El Niño remains generally unchanged. The weakened impact of the sea surface temperature anomaly (SSTA) over the tropical Indian Ocean (TIO) on the atmosphere is essential for the weakened anomalous WNPAC. In a warmer climate, the warm tropospheric temperature (TT) anomaly in the tropical free troposphere stimulated by the El Niño–related SSTA is enhanced through stronger moist adiabatic adjustment in a warmer mean state, even if the SSTA of El Niño is unchanged. But the amplitude of the warm SSTA over TIO remains generally unchanged in an El Niño–decaying summer, the static stability of the boundary layer over TIO is increased, and the positive rainfall anomaly over TIO is weakened. As a result, the warm Kelvin wave emanating from TIO is weakened because of a weaker latent heating anomaly over TIO, which is responsible for the weakened WNPAC anomaly. Numerical experiments support the weakened sensitivity of precipitation anomaly over TIO to local SSTA under an increase of mean-state SST and its essential role in the weakened anomalous WNPAC, independent of any change in the SSTA.


Sign in / Sign up

Export Citation Format

Share Document