North Pacific Gyre Oscillation Closely Associated With Spring Arctic Sea Ice Loss During 1998–2016

2020 ◽  
Vol 125 (10) ◽  
Author(s):  
Lejiang Yu ◽  
Shiyuan Zhong ◽  
Timo Vihma ◽  
Cuijuan Sui ◽  
Yubao Qiu ◽  
...  
2017 ◽  
Vol 30 (5) ◽  
pp. 1537-1552 ◽  
Author(s):  
Joe M. Osborne ◽  
James A. Screen ◽  
Mat Collins

Abstract The Arctic is warming faster than the global average. This disproportionate warming—known as Arctic amplification—has caused significant local changes to the Arctic system and more uncertain remote changes across the Northern Hemisphere midlatitudes. Here, an atmospheric general circulation model (AGCM) is used to test the sensitivity of the atmospheric and surface response to Arctic sea ice loss to the phase of the Atlantic multidecadal oscillation (AMO), which varies on (multi-) decadal time scales. Four experiments are performed, combining low and high sea ice states with global sea surface temperature (SST) anomalies associated with opposite phases of the AMO. A trough–ridge–trough response to wintertime sea ice loss is seen in the Pacific–North American sector in the negative phase of the AMO. The authors propose that this is a consequence of an increased meridional temperature gradient in response to sea ice loss, just south of the climatological maximum, in the midlatitudes of the central North Pacific. This causes a southward shift in the North Pacific storm track, which strengthens the Aleutian low with circulation anomalies propagating into North America. While the climate response to sea ice loss is sensitive to AMO-related SST anomalies in the North Pacific, there is little sensitivity to larger-magnitude SST anomalies in the North Atlantic. With background ocean–atmosphere states persisting for a number of years, there is the potential to improve predictions of the impacts of Arctic sea ice loss on decadal time scales.


2019 ◽  
Author(s):  
Lejiang Yu ◽  
Shiyuan Zhong ◽  
Timo Vihma

Abstract. Arctic sea ice decrease in extent in recent decades has been linked to sea surface temperature (SST) anomalies in the North Pacific Ocean. In this study, we assess the relative contributions of the two leading modes in North Pacific SST anomalies representing external forcing related to global warming and internal forcing related to Pacific Decadal Oscillation (PDO) to the Arctic sea ice loss in boreal summer and autumn. For the 1979–2017 period, the time series of the global warming and PDO modes show significant positive and negative trends, respectively. The global warming mode accounts for 44.9 % and 50.1 % of the Arctic sea ice loss in boreal summer and autumn during this period, compared to the 20.0 % and 22.2 % from the PDO mode. There is also a seasonal difference in the response of atmospheric circulations to the two modes. The PDO mode excites a wavetrain from North Pacific to the Arctic; the wavetrain is not seen in the response of atmospheric circulation to the global warming mode. Both dynamic and thermodynamic forcings work in the relationship of atmospheric circulation and sea ice anomalies.


2021 ◽  
Author(s):  
Hannah Bailey ◽  
Alun Hubbard ◽  
Eric S. Klein ◽  
Kaisa-Riikka Mustonen ◽  
Pete D. Akers ◽  
...  

2021 ◽  
Author(s):  
Doug Smith ◽  

<p>The possibility that Arctic sea ice loss could weaken mid-latitude westerlies and promote more severe cold winters has sparked more than a decade of scientific debate, with support from observations but inconclusive modelling evidence. Here we analyse a large multi-model ensemble of coordinated experiments from the Polar Amplification Model Intercomparison Project and find that the modelled response is proportional to the simulated eddy momentum feedback, and that this is underestimated in all models. Hence, we derive an observationally constrained model response showing a modest weakening of mid-latitude tropospheric and stratospheric winds, an equatorward shift of the Atlantic and Pacific storm tracks, and a negative North Atlantic Oscillation. Although our constrained response is consistent with observed relationships which have weakened recently, we caution that emergent constraints may only provide a lower bound.</p>


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Hyo-Seok Park ◽  
Seong-Joong Kim ◽  
Kyong-Hwan Seo ◽  
Andrew L. Stewart ◽  
Seo-Yeon Kim ◽  
...  

2012 ◽  
Vol 6 (4) ◽  
pp. 2653-2687 ◽  
Author(s):  
A. E. West ◽  
A. B. Keen ◽  
H. T. Hewitt

Abstract. The fully-coupled climate model HadGEM1 produces one of the most accurate simulations of the historical record of Arctic sea ice seen in the IPCC AR4 multi-model ensemble. In this study, we examine projections of sea ice decline out to 2030, produced by two ensembles of HadGEM1 with natural and anthropogenic forcings included. These ensembles project a significant slowing of the rate of ice loss to occur after 2010, with some integrations even simulating a small increase in ice area. We use an energy budget of the Arctic to examine the causes of this slowdown. A negative feedback effect by which rapid reductions in ice thickness north of Greenland reduce ice export is found to play a major role. A slight reduction in ocean-to-ice heat flux in the relevant period, caused by changes in the MOC and subpolar gyre in some integrations, is also found to play a part. Finally, we assess the likelihood of a slowdown occurring in the real world due to these causes.


2018 ◽  
Vol 45 (7) ◽  
pp. 3255-3263 ◽  
Author(s):  
Fumiaki Ogawa ◽  
Noel Keenlyside ◽  
Yongqi Gao ◽  
Torben Koenigk ◽  
Shuting Yang ◽  
...  

2021 ◽  
Author(s):  
Yeon-Hee Kim ◽  
Seung-Ki Min

<p>Arctic sea-ice area (ASIA) has been declining rapidly throughout the year during recent decades, but a formal quantification of greenhouse gas (GHG) contribution remains limited. This study conducts an attribution analysis of the observed ASIA changes from 1979 to 2017 by comparing three satellite observations with the Coupled Model Intercomparison Project Phase 6 (CMIP6) multi-model simulations using an optimal fingerprint method. The observed ASIA exhibits overall decreasing trends across all months with stronger trends in warm seasons. CMIP6 anthropogenic plus natural forcing (ALL) simulations and GHG-only forcing simulations successfully capture the observed temporal trend patterns. Results from detection analysis show that ALL signals are detected robustly for all calendar months for three observations. It is found that GHG signals are detectable in the observed ASIA decrease throughout the year, explaining most of the ASIA reduction, with a much weaker contribution by other external forcings. We additionally find that the Arctic Ocean will occur ice-free in September around the 2040s regardless of the emission scenario.</p>


Sign in / Sign up

Export Citation Format

Share Document