scholarly journals North Indian Ocean Circulation Since the Last Deglaciation as Inferred From New Elemental Ratio Records for Benthic Foraminifera Hoeglundina elegans

2020 ◽  
Vol 35 (6) ◽  
Author(s):  
Ruifang Ma ◽  
Sophie Sépulcre ◽  
Franck Bassinot ◽  
Frédéric Haurine ◽  
Nadine Tisnérat‐Laborde ◽  
...  
2006 ◽  
Vol 243 (1-2) ◽  
pp. 244-251 ◽  
Author(s):  
C WAELBROECK ◽  
C LEVI ◽  
J DUPLESSY ◽  
L LABEYRIE ◽  
E MICHEL ◽  
...  

2020 ◽  
Vol 33 (17) ◽  
pp. 7455-7478
Author(s):  
Nanxuan Jiang ◽  
Qing Yan ◽  
Zhiqing Xu ◽  
Jian Shi ◽  
Ran Zhang

AbstractTo advance our knowledge of the response of midlatitude westerlies to various external forcings, we investigate the meridional shift of midlatitude westerlies over arid central Asia (ACA) during the past 21 000 years, which experienced more varied forcings than the present day based on a set of transient simulations. Our results suggest that the evolution of midlatitude westerlies over ACA and driving factors vary with time and across seasons. In spring, the location of midlatitude westerlies over ACA oscillates largely during the last deglaciation, driven by meltwater fluxes and continental ice sheets, and then shows a long-term equatorward shift during the Holocene controlled by orbital insolation. In summer, orbital insolation dominates the meridional shift of midlatitude westerlies, with poleward and equatorward migration during the last deglaciation and the Holocene, respectively. From a thermodynamic perspective, variations in zonal winds are linked with the meridional temperature gradient based on the thermal wind relationship. From a dynamic perspective, variations in midlatitude westerlies are mainly induced by anomalous sea surface temperatures over the Indian Ocean through the Matsuno–Gill response and over the North Atlantic Ocean by the propagation of Rossby waves, or both, but their relative importance varies across forcings. Additionally, the modeled meridional shift of midlatitude westerlies is broadly consistent with geological evidence, although model–data discrepancies still exist. Overall, our study provides a possible scenario for a meridional shift of midlatitude westerlies over ACA in response to various external forcings during the past 21 000 years and highlights important roles of both the Indian Ocean and the North Atlantic Ocean in regulating Asian westerlies, which may shed light on the behavior of westerlies in the future.


2013 ◽  
Vol 28 (4) ◽  
pp. 619-632 ◽  
Author(s):  
Yiming V. Wang ◽  
Guillaume Leduc ◽  
Marcus Regenberg ◽  
Nils Andersen ◽  
Thomas Larsen ◽  
...  

2001 ◽  
Vol 184 (2) ◽  
pp. 505-514 ◽  
Author(s):  
Franco Marcantonio ◽  
Robert F. Anderson ◽  
Sean Higgins ◽  
Martin Q. Fleisher ◽  
Martin Stute ◽  
...  

2020 ◽  
Author(s):  
Ruifang Ma ◽  
Sophie Sépulcre ◽  
Laetitia Licari ◽  
Frédéric Haurine ◽  
Franck Bassinot ◽  
...  

Abstract. We have measured Cd / Ca ratios of several benthic foraminiferal species and studied benthic foraminiferal assemblages on two cores from the northern Indian Ocean (Arabian Sea and northern Bay of Bengal, BoB), in order to reconstruct variations in intermediate water circulation and paleo-nutrient content since the last deglaciation. Intermediate water Cdw records estimated from the benthic Cd / Ca reflect past changes in surface productivity and/or intermediate-bottom water ventilation. The benthic foraminiferal assemblages are consistent with the geochemical data. These results suggest that during the last deglaciation, the Heinrich Stadial 1 and Younger Dryas (HS1 and YD, respectively) millennial-scale events were marked by a decrease in Cdw values, indicating an enhanced ventilation of intermediate-bottom water masses. Benthic foraminifer assemblages indicate that surface primary productivity was low during the early Holocene (from 10 to 6 cal kyr BP), resulting in low intermediate water Cdw at both sites. From ~ 5.2 to 2.4 cal kyr BP, the benthic foraminiferal assemblages indicate meso- to eutrophic intermediate water conditions, which correspond to high surface productivity. This is consistent with a significant increase in the intermediate water Cdw in the southeastern Arabian Sea and the northeastern BoB. The comparison of intermediate water Cdw records with previous reconstructions of past Indian monsoon evolution during the Holocene suggests a direct control of intermediate water Cdw by monsoon-induced changes in upper water stratification and surface primary productivity.


2019 ◽  
Vol 15 (4) ◽  
pp. 1621-1646
Author(s):  
Heather J. Andres ◽  
Lev Tarasov

Abstract. Abrupt climate shifts of large amplitudes were common features of the Earth's climate as it transitioned into and out of the last full glacial state approximately 20 000 years ago, but their causes are not yet established. Midlatitude atmospheric dynamics may have played an important role in these climate variations through their effects on heat and precipitation distributions, sea ice extent, and wind-driven ocean circulation patterns. This study characterizes deglacial winter wind changes over the North Atlantic (NAtl) in a suite of transient deglacial simulations using the PlaSim Earth system model (run at T42 resolution) and the TraCE-21ka (T31) simulation. Though driven with yearly updates in surface elevation, we detect multiple instances of NAtl jet transitions in the PlaSim simulations that occur within 10 simulation years and a sensitivity of the jet to background climate conditions. Thus, we suggest that changes to the NAtl jet may play an important role in abrupt glacial climate changes. We identify two types of simulated wind changes over the last deglaciation. Firstly, the latitude of the NAtl eddy-driven jet shifts northward over the deglaciation in a sequence of distinct steps. Secondly, the variability in the NAtl jet gradually shifts from a Last Glacial Maximum (LGM) state with a strongly preferred jet latitude and a restricted latitudinal range to one with no single preferred latitude and a range that is at least 11∘ broader. These changes can significantly affect ocean circulation. Changes to the position of the NAtl jet alter the location of the wind forcing driving oceanic surface gyres and the limits of sea ice extent, whereas a shift to a more variable jet reduces the effectiveness of the wind forcing at driving surface ocean transports. The processes controlling these two types of changes differ on the upstream and downstream ends of the NAtl eddy-driven jet. On the upstream side over eastern North America, the elevated ice sheet margin acts as a barrier to the winds in both the PlaSim simulations and the TraCE-21ka experiment. This constrains both the position and the latitudinal variability in the jet at LGM, so the jet shifts in sync with ice sheet margin changes. In contrast, the downstream side over the eastern NAtl is more sensitive to the thermal state of the background climate. Our results suggest that the presence of an elevated ice sheet margin in the south-eastern sector of the North American ice complex strongly constrains the deglacial position of the jet over eastern North America and the western North Atlantic as well as its variability.


Sign in / Sign up

Export Citation Format

Share Document