scholarly journals InSAR Reveals Complex Surface Deformation Patterns Over an 80,000 km 2 Oil‐Producing Region in the Permian Basin

2020 ◽  
Vol 47 (21) ◽  
Author(s):  
Scott Staniewicz ◽  
Jingyi Chen ◽  
Hunjoo Lee ◽  
Jon Olson ◽  
Alexandros Savvaidis ◽  
...  
1999 ◽  
Vol 121 (2) ◽  
pp. 182-188 ◽  
Author(s):  
Daniel Walgraef

The coupling between surface deformation and defect motion may be at the origin of deformation patterns in thin films under laser irradiation. We analyze the dynamics of laser-induced vacancy densities and deformation fields and show how it triggers deformational instabilities, in the case of uniform and focused laser irradiation. Pattern selection analysis is performed, through linear, nonlinear, and numerical methods. In irradiation with extended beams, we show that, according to the relative importance of nonlinearities arising from the defect or from the bending dynamics, square, hexagonal or even quasi-periodic patterns are selected. It appears, furthermore, that one-dimensional gratings are always unstable in isotropic systems. In irradiation with focused laser beams, rose deformation patterns, with petal number increasing with laser intensity, naturally arise in this model, in qualitative agreement with experimental observations. These results claim for more systematic and quantitative experimental investigations of deformational pattern formation under laser irradiation.


2021 ◽  
Author(s):  
Vincent Twomey ◽  
William McCarthy ◽  
Craig Magee

<p>Laccoliths play a significant role in the transport and storage of magma in sub-volcanic systems. The construction and geometry of laccoliths can influence host rock and surface deformation patterns that may precede and provide warning of active magmatism and impending eruptions. Yet how laccolith construction and internal magma dynamics controls the location and form of magma ascent conduits (e.g., dykes and inclined sheets), which facilitate magma evacuation and may feed volcanic eruptions, remains poorly documented in natural examples.</p><p>The excellently exposed silicic, sub-volcanic Miocene Reyðarártindur Laccolith in SE Iceland offers an opportunity to investigate how magma ascent within inclined sheets, which emanated from the laccolith, related to intrusion construction and deformation in the surrounding host rock. We combine detailed structural mapping with anisotropy of magnetic susceptibility (AMS) analyses, which allow us to map magnetic rock fabrics that reflect magma flow patterns, to show that the laccolith comprises of several distinct magma lobes that intruded laterally towards the south-west. Each lobe intruded, inflated, and coalesced along a NE-SW primary axis facilitated by doming (i.e., forced folding) of the host rock. We also shown that pre-existing NNE-striking, left-stepping, en-echelon fault/fractures, as well as those generated during intrusion-induced host rock uplift, host moderately to steeply inclined rhyolitic/granophyric sheets that emanate from the lateral terminations of some flow lobes.</p><p>Based on the observed geometrical relationships between AMS fabrics and the sheet margins where magnetic foliations subparallel sheet contacts, or characterize an imbrication fabric, we suggest that magma evacuated moderately to steeply upward via these fault/fracture-controlled sheets. As these inclined sheets dip towards the laccolith, any eruptions they may have fed would have been laterally offset from the laccolith and any overlying surface deformation driven by forced folding. Our study shows that magma evacuation and ascent from laccoliths can be facilitated by inclined sheets that form at the lateral terminations of magma lobes that are spatially controlled by laccolith construction (e.g., flow direction and doming of the host rock) and the presence of pre-existing structures.</p>


2021 ◽  
Author(s):  
Håvard Svanes Bertelsen ◽  
Frank Guldstrand ◽  
Sigmundsson Freysteinn ◽  
Rikke Pedersen ◽  
Karen Mair ◽  
...  

<p><span>Geodetic modelling has become an established procedure to interpret the dynamics of active volcanic plumbing systems. Most established geodetic models implemented for inverting geodetic data share similar physical assumptions: (1) the Earth's crust is modelled as an infinite, homogeneous elastic half-space with a flat surface, (2) there is no anisotropic horizontal stress to simulate tectonic stresses, (3) the source boundary conditions are kinematic, i.e., they account for an instantaneous inflation or deflation of the source. Field and geophysical observations, however, provide evidence that significant inelastic shear deformation of the host rock can accommodate the propagation of dykes and sills. We show that inelastic processes accommodating the emplacement of dykes in the brittle crust have large implications for dyke-induced surface deformation patterns. </span></p><p><span>We present two quantitative laboratory experiments that simulate two distinct dyke emplacement mechanisms, in agreement with geological and geophysical observations: (1) dyke propagation as a tensile fracture through a dominantly elastic host in gelatin, and (2) dyke propagation in the silica flour as viscous indenter, which pushes its ahead plastic host that dominantly fails in shear. The syn-emplacement surface deformation is monitored during each experiment. Each dyke emplacement mechanism triggers drastically distinct surface deformation patterns: two uplifting bulges separated by a trough in the gelatin experiment, in good agreement with the expected dyke-induced deformation predicted by the rectangular dislocation model, versus a single uplifting elongated bulge above the apex of the dyke in the silica flour experiment. This first-order difference shows that (1) the rheology of the host and the emplacement mechanisms of dykes are key factors for interpreting dyke-induced geodetic data at active volcanoes, and (2) static, kinematic geodetic models, such as the rectangular dislocation model, have limitations for revealing the physics and dynamics of volcanic plumbing systems. </span></p><p><span>There is no geodetic model associated with dyke emplacement able to reproduce the single uplifting bulge measured in our silica flour experiment. Instead, such surface deformation pattern is usually fitted with geodetic models of inflating spherical, ellipsoidal or horizontal planar sources. Our silica flour experiment thus shows that (1) a successful data fit is not sufficient and does not imply a physically relevant interpretation, and (2) dykes emplaced as viscous indenters should be considered as an alternative interpretation of single uplifting bulges measured at active volcanoes. This implies that novel geodetic models accounting for dykes emplaced as viscous indenters should be designed to interpret dyke-induced surface deformation patterns in favorable geological settings, e.g. felsic volcanoes. </span></p><p><span>In summary, our study motivates the design of new geodetic models that move beyond elasticity, i.e. that account for the realistic elasto-plastic mechanical behavior we know occurs in the Earth's brittle crust. In addition, it highlights the added value of our </span><span><em>laboratory volcano geodesy</em></span><span> approach, which can be the foundation for designing novel geodetic models that accounts for processes that cannot be implemented in numerical models. </span></p>


2019 ◽  
Vol 110 (1) ◽  
pp. 49-66 ◽  
Author(s):  
Kristofer T. Hornsby ◽  
Ashley R. Streig ◽  
Scott E. K. Bennett ◽  
Jefferson C. Chang ◽  
Shannon Mahan

ABSTRACT The Meers fault (Oklahoma) is one of few seismogenic structures with evidence for Holocene surface rupture in the stable continental region of North America. The 37-kilometer-long southeast section of the full 54-kilometer-long Meers fault is interpreted to be Holocene active. The 17-kilometer-long northwest section is considered Quaternary active, but not Holocene active. We reevaluate surface expression and earthquake timing of the northwest Meers fault to improve seismic source characterization. We use airborne light detection and ranging and historical stereopaired aerial photos to evaluate the fault scarp and local fault-zone geomorphology. In the northwest, complex surface deformation includes fault splays, subtle monoclinal warping, and a minor change in fault strike. We interpret that the along-strike transition from surface faulting on the southeast Meers fault to surface folding on the northwest Meers fault occurs at the lithologic contact between Permian Post Oak conglomerate and Hennessey shale. We excavated a paleoseismic trench to evaluate the timing of surface-deforming earthquakes on the northwest section of the fault. The excavation revealed weathered Permian Hennessey shale and an ∼1–2-meter-thick veneer of Holocene alluvial deposits that were progressively deformed during two surface-folding earthquakes likely related to blind fault rupture beneath the site. Repeated onlapping to overlapping stratigraphic sequences and associated unconformities are intimately related to folding events along the monocline. OxCal paleoearthquake age modeling indicates that earthquakes occurred 4704–3109 yr B.P. and 5955–4744 yr B.P., and that part of the northwest section of the Meers fault is Holocene active. We find the Holocene-active section of the Meers fault should be lengthened 6.1 km to the northwest, to a total Holocene-active fault length of 43 km. Empirical scaling relationships between surface rupture length and magnitude reveal that the fault could generate an Mw 7.0 earthquake.


2000 ◽  
Vol 25 (15) ◽  
pp. 1068 ◽  
Author(s):  
James M. Kilpatrick ◽  
Andrew J. Moore ◽  
James S. Barton ◽  
Julian D. C. Jones ◽  
Mark Reeves ◽  
...  

2018 ◽  
Author(s):  
Marco Marcer ◽  
Charlie Serrano ◽  
Alexander Brenning ◽  
Xavier Bodin ◽  
Jason Goetz ◽  
...  

Abstract. Knowing the extent of degrading permafrost is a key issue in the context of emerging risks linked to climate change. In the present study we propose a methodology to estimate the spatial distribution of this phenomenon, focusing on the French Alps. At first, using recent orthoimages (2000 to 2013) covering the study region, we mapped the geomorphological features that can be typically found in cases of rock glacier destabilization (e.g. crevasses and scarps). This database was then used as support tool to rate rock glaciers destabilization. The destabilization rating was assigned also taking into account the surface deformation patterns of the rock glacier, observable by comparing the orthoimages. The destabilization rating served as database to model the occurrence of destabilization in relation to terrain attributes and to predict the susceptibility to destabilization at the regional scale. Potential destabilization could be observed in 58 rock glaciers, i.e. 12  of the total active rock glaciers in the region. Potentially destabilized rock glaciers were found to be more prone to strong acceleration than stable rock glaciers within the period 2000–2013. Modelling the occurrence of destabilization suggested that this phenomenon is more likely to occur in elevations around the 0 °C isotherm (2700–2900 m.s.l.), on north-exposed, steep (up to 30°) and flat to slightly convex topographies. Model performances were good (AUROC: 0.76) and the susceptibility map reproduced well the observable patterns. About 3 km2 of creeping permafrost, i.e. 10 % of the surface occupied by active rock glaciers, had a high susceptibility to destabilization. Only half of this surface is currently showing destabilization evidence, suggesting that a significant amount of rock glaciers are candidates for future destabilization.


Author(s):  
J. Eppler ◽  
M. Kubanski ◽  
J. Sharma ◽  
J. Busler

The combined effect of climate change and accelerated economic development in Northern regions increases the threat of permafrost related surface deformation to buildings and transportation infrastructure. Satellite based InSAR provides a means for monitoring infrastructure that may be both remote and spatially extensive. However, permafrost poses challenges for InSAR monitoring due to the complex temporal deformation patterns caused by both seasonal active layer fluctuations and long-term changes in permafrost thickness. These dynamics suggest a need for increasing the temporal resolution of multi-temporal InSAR methods. To address this issue we have developed a method that combines and jointly processes two or more same side geometry InSAR stacks to provide a high-temporal resolution estimate of surface deformation. The method allows for combining stacks from more than a single SAR sensor and for a combination of frequency bands. <br><br> Data for this work have been collected and analysed for an area near the community of Umiujaq, Quebec in Northern Canada and include scenes from RADARSAT-2, TerraSAR-X and COSMO-SkyMed. Multiple stack based surface deformation estimates are compared for several cases including results from the three sensors individually and for all sensors combined. The test cases show substantially similar surface deformation results which correlate well with surficial geology. The best spatial coverage of coherent targets was achieved when data from all sensors were combined. <br><br> The proposed multiple stack method is demonstrated to improve the estimation of surface deformation in permafrost affected areas and shows potential for deriving InSAR based permafrost classification maps to aid in the monitoring of Northern infrastructure.


2021 ◽  
Author(s):  
Vanja Kastelic ◽  
Simone Atzori ◽  
Michele M. C. Carafa ◽  
Marin Marin Govorčin ◽  
Davorka Herak ◽  
...  

&lt;p&gt;The ongoing Petrinja earthquake sequence interests a structurally complex area characterized by the transition between the Dinarides and the Pannonian Basin structural units. The sequence mainshock (December 29, 2020; Mw = 6.4) struck in the vicinity of the Petrinja town and caused significant damage in the human and in the natural environments. The preliminary seismological and geodetic analyses indicated a dextral strike-slip NW-SE oriented fault as the event source. Numerous geologic surface deformation patterns have been identified in the aftermath of the main event, including collapsed sinkholes, liquefaction, different forms of landslides, and surface fractures which nature and causative process require further detailed studies.&lt;br&gt;The aim of our contribution is to apply a multitude of different geophysical, geodetic and geologic methodologies to decipher the Petrinja seismogenic fault geometry in the light of its ongoing earthquake sequence. We will show how the different datasets converge in delineating the fault geometry and discuss their diverging aspects and implications. Our preliminary analyses on the geometric and kinematic characteristics of the mainshock (as well as those of the foreshocks and aftershocks) point to an important structural complexity. This aspect helps us to better understand the seismotectonic framework of the Petrinja seismogenic fault and other regional seismogenic faults of similar geologic and geodynamic setting.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document