Latitudinal Variations of Daytime Periodic Ionospheric Disturbances From Beidou GEO TEC Observations Over China

2021 ◽  
Vol 126 (3) ◽  
Author(s):  
Lianhuan Hu ◽  
Jiuhou Lei ◽  
Wenjie Sun ◽  
Xiukuan Zhao ◽  
Baoyuan Wu ◽  
...  
2004 ◽  
Vol 22 (2) ◽  
pp. 405-415 ◽  
Author(s):  
P. Wielgosz ◽  
L. W. Baran ◽  
I. I. Shagimuratov ◽  
M. V. Aleshnikova

Abstract. GPS technique has opened broad possibilities to study the TEC distribution on a regular basis. In this paper, the latitudinal dependence of TEC over Europe for geographic latitudes ranging from 40°N to 75°N is presented. We discuss the day-to-day variations of the latitudinal TEC profiles for a period of 1999 to 2001 for both quiet and disturbed magnetic conditions. More than 4300 TEC profiles were created from the TEC maps with a one-hour interval. GPS data from 65 European permanent stations were used to produce the TEC maps. The comparison of GPS-derived TEC profiles with the IRI model is also discussed. Key words. Ionosphere (mid-latitude ionosphere; ionospheric disturbances)


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 138
Author(s):  
Yuri I. Yermolaev ◽  
Irina G. Lodkina ◽  
Lidia A. Dremukhina ◽  
Michael Y. Yermolaev ◽  
Alexander A. Khokhlachev

One of the most promising methods of research in solar–terrestrial physics is the comparison of the responses of the magnetosphere–ionosphere–atmosphere system to various types of interplanetary disturbances (so-called “interplanetary drivers”). Numerous studies have shown that different types of drivers result in different reactions of the system for identical variations in the interplanetary magnetic field. In particular, the sheaths—compression regions before fast interplanetary CMEs (ICMEs)—have higher efficiency in terms of the generation of magnetic storms than ICMEs. The growing popularity of this method of research is accompanied by the growth of incorrect methodological approaches in such studies. These errors can be divided into four main classes: (i) using incorrect data with the identification of driver types published in other studies; (ii) using incorrect methods to identify the types of drivers and, as a result, misclassify the causes of magnetospheric-ionospheric disturbances; (iii) ignoring a frequent case with a complex, composite, nature of the driver (the presence of a sequence of several simple drivers) and matching the system response with only one of the drivers; for example, a magnetic storm is often generated by a sheath in front of ICME, although the authors consider these events to be a so-called “CME-induced” storm, rather than a “sheath-induced” storm; (iv) ignoring the compression regions before the fast CME in the case when there is no interplanetary shock (IS) in front of the compression region (“sheath without IS” or the so-called “lost driver”), although this type of driver generates about 10% of moderate and large magnetic storms. Possible ways of solving this problem are discussed.


Sign in / Sign up

Export Citation Format

Share Document