scholarly journals Automatic Inversions of Strong‐Motion Records for Finite‐Fault Models of Significant Earthquakes in and Around Japan

2020 ◽  
Vol 125 (9) ◽  
Author(s):  
Xujun Zheng ◽  
Yong Zhang ◽  
Rongjiang Wang ◽  
Li Zhao ◽  
Wenying Li ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Deyu Yin ◽  
Yun Dong ◽  
Qifang Liu ◽  
Yuexin She ◽  
Jingke Wu ◽  
...  

In order to reproduce the rupture history of the 2008 Mw8.0 Wenchuan earthquake, the teleseismic and strong-motion records are adopted. Based on a multiple-segment, variable-slip model, the finite fault inversion method is utilized to recover the rupture process. The results are as follows: (1) the rupture duration of the Wenchuan earthquake is about 100 s, and the released seismic moment is 1.24 × 1021 N·m, equal to the moment magnitude Mw8.0. There are 5 asperities on the fault plane, indicating that the earthquake is composed of at least 5 subevents. (2) The slip is mainly distributed on the Beichuan fault, indicating that the Beichuan fault is the main rupture fault. On the southern part of the Beichuan fault, the dislocation underside the Longmenshan area and Hongkou-Yingxiu near-surface area is dominated by thrust, and the maximum slip is 11.8 m. Slip between the Yuejiashan and Qingping area is dominated by thrust. On the northern part of the Beichuan fault, the area under Beichuan is dominated by thrust, the slip under Nanba is thrust and strike, near Qingchuan, the slip turns into the strike slip, and the maximum slip is 13.1 m. The dislocation under Bailu is also dominated by thrust, with maximum slip 8.9 m. (3) The rupture of the Wenchuan earthquake is mainly a unilateral rupture to the northeast. The rupture started at the low dip angle part of the Beichuan fault, and after 3 s, it propagated to the Pengguan fault. After 10 s, the largest asperity under Longmenshan in the south section of the Beichuan fault began to break, lasting for about 24 s. Then, the Xiaoyudong fault was triggered by the Pengguan fault, and the bilateral rupture of the high dip angle part of the Beichuan fault started at about 6 s. South section of the Beichuan fault began to break at about 35 s, and at 43 s, 63 s, and 80 s, the rupture extended to Beichuan, Nanba, and Qingchuan areas.


2021 ◽  
Author(s):  
Pınar Büyükakpınar ◽  
Mohammadreza Jamalreyhani ◽  
Mehdi Rezapour ◽  
Stefanie Donner ◽  
Nima Nooshiri ◽  
...  

<p>In May 2020 an earthquake with Mw 5.0 struck at ~40 km east of Tehran metropolis and ~15 km south of the Damavand stratovolcano. It was responsible for 2 casualties and 23 injured. The mainshock was preceded by a foreshock with Ml 2.9 and followed by a significant aftershock sequence, including ten events with Ml 3+. The occurrence of this event raised the question of its relation with volcanic activities and/or concern about the occurrence of larger future earthquakes in the capital of Iran. Tehran megacity is surrounded by several inner-city and adjacent active faults that correspond to high-risk seismic sources in the area. The Mosha fault with ~150 km long is one of the major active faults in central Alborz and east of Tehran. It has hosted several historical earthquakes (i.e. 1665 Mw 6.5 and 1830 Mw 7.1 earthquakes) in the vicinity of the 2020 Mw 5.0 Tehran earthquake’s hypocenter. In this study, we evaluate the seismic sequence of the Tehran earthquake and obtain the full moment tensor inversion of this event and its larger aftershocks, which is a key tool to discriminate between tectonic and volcanic earthquakes. Furthermore, we obtain a robust characterization of the finite fault model of this event applying probabilistic earthquake source inversion framework using near-field strong-motion records and broadband seismograms, with an estimation of the uncertainties of source parameters. Due to the relatively weak magnitude and deeper centroid depth (~12 km), no static surface displacement was observed in the coseismic interferograms, and modeling performed by seismic records. Focal mechanism solution from waveform inversion, with a significant double-couple component, is compatible with the orientation of the sinistral north-dipping Mosha fault at the centroid location. The finite fault model suggests that the mainshock rupture propagated towards the northwest. This directivity enhanced the peak acceleration in the direction of rupture propagation, observed in strong-motion records. The 2020 moderate magnitude earthquake with 2 casualties, highlights the necessity of high-resolution seismic monitoring in the capital of Iran, which is exposed to a risk of destructive earthquakes with more than 10 million population. Our results are important for the hazard and risk assessment, and the forthcoming earthquake early warning system development in Tehran metropolis.</p>


Circular ◽  
1995 ◽  
Author(s):  
J. C. Switzer ◽  
R.L. Porcella

1980 ◽  
Vol 70 (6) ◽  
pp. 2295-2297
Author(s):  
David M. Boore ◽  
Ronald L. Porcella

1996 ◽  
Vol 86 (2) ◽  
pp. 519-523
Author(s):  
Igor A. Beresnev ◽  
Kuo-Liang Wen

Abstract Spectral ratios between soft soil and reference rock sites are often used to predict the sedimentary site response to earthquakes. However, their relationship with the genuine site-specific amplification function is often unclear. We compare the soil-to-rock spectral ratios between the stations that are 3.3 km apart with the “genuine” response given by the ratios between the surface and 17 and 47 m downhole. Data from the SMART1 array in Taiwan are used. The “weak” and “strong” motion records are addressed separately to allow for nonlinear soil response. The soil-to-rock spectral ratios are nearly identical to the “true” amplification at the frequencies from 1 to 10 Hz, if the finite depth of the borehole is taken into account. They correctly capture the strong-motion deamplification effect. However, the soil-to-rock spectral ratios are roughly 1.4 times more uncertain than surface-to-47-m ratios. In summary, the soil-to-rock spectral ratios can be considered as the reliable estimates of the real site response.


Sign in / Sign up

Export Citation Format

Share Document