Period‐Lengthening of the Mindanao Current Variability from the Long‐Term Tide Gauge Sea Level Measurements

Author(s):  
Xiao Chen ◽  
Bo Qiu ◽  
Shuiming Chen ◽  
Yiquan Qi
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
H. Bâki Iz ◽  
C. K. Shum ◽  
C. Zhang ◽  
C. Y. Kuo

AbstractThis study demonstrates that relative sea level trends calculated from long-term tide gauge records can be used to estimate relative vertical crustal velocities in a region with high accuracy. A comparison of the weighted averages of the relative sea level trends estimated at six tide gauge stations in two clusters along the Eastern coast of United States, in Florida and in Maryland, reveals a statistically significant regional vertical crustal motion of Maryland with respect to Florida with a subsidence rate of −1.15±0.15 mm/yr identified predominantly due to the ongoing glacial isostatic adjustment process. The estimate is a consilience value to validate vertical crustal velocities calculated from GPS time series as well as towards constraining predictive GIA models in these regions.


Ocean Science ◽  
2020 ◽  
Vol 16 (4) ◽  
pp. 997-1016
Author(s):  
Tal Ezer ◽  
Sönke Dangendorf

Abstract. A new monthly global sea level reconstruction for 1900–2015 was analyzed and compared with various observations to examine regional variability and trends in the ocean dynamics of the western North Atlantic Ocean and the US East Coast. Proxies of the Gulf Stream (GS) strength in the Mid-Atlantic Bight (GS-MAB) and in the South Atlantic Bight (GS-SAB) were derived from sea level differences across the GS. While decadal oscillations dominate the 116-year record, the analysis showed an unprecedented long period of weakening in the GS flow since the late 1990s. The only other period of long weakening in the record was during the 1960s–1970s, and red noise experiments showed that is very unlikely that those just occurred by chance. Ensemble empirical mode decomposition (EEMD) was used to separate oscillations at different timescales, showing that the low-frequency variability of the GS is connected to the Atlantic Multi-decadal Oscillation (AMO) and the Atlantic Meridional Overturning Circulation (AMOC). The recent weakening of the reconstructed GS-MAB was mostly influenced by weakening of the upper mid-ocean transport component of AMOC as observed by the RAPID measurements for 2005–2015. Comparison between the reconstructed sea level near the coast and tide gauge data for 1927–2015 showed that the reconstruction underestimated observed coastal sea level variability for timescales less than ∼5 years, but lower-frequency variability of coastal sea level was captured very well in both amplitude and phase by the reconstruction. Comparison between the GS-SAB proxy and the observed Florida Current transport for 1982–2015 also showed significant correlations for oscillations with periods longer than ∼5 years. The study demonstrated that despite the coarse horizontal resolution of the global reconstruction (1∘ × 1∘), long-term variations in regional dynamics can be captured quite well, thus making the data useful for studies of long-term variability in other regions as well.


Author(s):  
L. Rickards ◽  
A. Matthwes ◽  
K. Gordon ◽  
M. Tamisea ◽  
S. Jevrejeva ◽  
...  

Abstract. The PSMSL was established as a “Permanent Service” of the International Council for Science in 1958, but in practice was a continuation of the Mean Sea Level Committee which had been set up at the Lisbon International Union of Geodesy and Geophysics (IUGG) conference in 1933. Now in its 80th year, the PSMSL continues to be the internationally recognised databank for long-term sea level change information from tide gauge records. The PSMSL dataset consists of over 2100 mean sea level records from across the globe, the longest of which date back to the start of the 19th century. Where possible, all data in a series are provided to a common benchmark-controlled datum, thus providing a record suitable for use in time series analysis. The PSMSL dataset is freely available for all to use, and is accessible through the PSMSL website (www.psmsl.org).


2020 ◽  
Vol 42 (4) ◽  
pp. 411-424
Author(s):  
Aleksandr KHOLOPTSEV ◽  
Sergey PODPORIN

The paper aims to investigate basic features of modern long-term variations of the Okhotsk Sea level in its coastal areas and establish feasibility of certain retrospective analysis databases usage for determination of mean rates of the above processes. The reanalysis databases considered include Global Ocean Physics Reanalysis GLORYS12v.1 by the Copernicus Marine Environment Monitoring Service and ICDC-reanalysis supported by the Integrated Climate Data Center, which provide coverage of the sea in question. The raised problem is of significant interest for physiographers, oceanographers and involved in coastal shipping and marine safety in the Sea of Okhotsk. Long-term sea level variations are most accurately monitored by tide gauge stations, which, however, are scarce along the coast of the sea in question. Less accurate and not uniformly available through easier to use and collect data is the satellite monitoring by radar altimeters. Global retrospective analyses based on mathematical modelling are considered to be an effective instrument to assess sea levels at any given time at any point.


2020 ◽  
Author(s):  
Marta Marcos ◽  
Bernat Puyol ◽  
Angel Amores ◽  
Begoña Pérez Gómez ◽  
M. Ángeles Fraile ◽  
...  

<p><span>A set of historical tide-gauge sea-level records from two locations in Santander (Northern Spain) and Alicante (Spanish Mediterranean coast) have been recovered from logbooks stored in national archives. Sea-level measurements have been digitised, quality-controlled and merged into three consistent sea-level time series (two in Alicante and one in Santander) using high precision levelling information. The historical sea-level record in Santander consists of a daily time series spanning the period 1876-1924 and it is further connected to the modern tide-gauge station nearby, ensuring datum continuity up to the present. The sea-level record in Alicante starts in 1870 with daily averaged values until the 1920s and hourly afterwards, and is still in operation, thus representing the longest tide-gauge sea-level time series in the Mediterranean Sea. The long-term consistency and reliability of the new records is discussed based on the comparison with nearby tide gauge time series.</span></p>


2019 ◽  
Vol 36 (11) ◽  
pp. 2205-2219 ◽  
Author(s):  
Li Zhai ◽  
Blair Greenan ◽  
Richard Thomson ◽  
Scott Tinis

AbstractA storm surge hindcast for the west coast of Canada was generated for the period 1980–2016 using a 2D nonlinear barotropic Princeton Ocean Model forced by hourly Climate Forecast System Reanalysis wind and sea level pressure. Validation of the modeled storm surges using tide gauge records has indicated that there are extensive areas of the British Columbia coast where the model does not capture the processes that determine the sea level variability on intraseasonal and interannual time scales. Some of the discrepancies are linked to large-scale fluctuations, such as those arising from major El Niño and La Niña events. By applying an adjustment to the hindcast using an ocean reanalysis product that incorporates large-scale sea level variability and steric effects, the variance of the error of the adjusted surges is significantly reduced (by up to 50%) compared to that of surges from the barotropic model. The importance of baroclinic dynamics and steric effects to accurate storm surge forecasting in this coastal region is demonstrated, as is the need to incorporate decadal-scale, basin-specific oceanic variability into the estimation of extreme coastal sea levels. The results improve long-term extreme water level estimates and allowances for the west coast of Canada in the absence of long-term tide gauge records data.


2012 ◽  
Vol 19 (1) ◽  
pp. 95-111 ◽  
Author(s):  
R. V. Donner ◽  
R. Ehrcke ◽  
S. M. Barbosa ◽  
J. Wagner ◽  
J. F. Donges ◽  
...  

Abstract. The study of long-term trends in tide gauge data is important for understanding the present and future risk of changes in sea-level variability for coastal zones, particularly with respect to the ongoing debate on climate change impacts. Traditionally, most corresponding analyses have exclusively focused on trends in mean sea-level. However, such studies are not able to provide sufficient information about changes in the full probability distribution (especially in the more extreme quantiles). As an alternative, in this paper we apply quantile regression (QR) for studying changes in arbitrary quantiles of sea-level variability. For this purpose, we chose two different QR approaches and discuss the advantages and disadvantages of different settings. In particular, traditional linear QR poses very restrictive assumptions that are often not met in reality. For monthly data from 47 tide gauges from along the Baltic Sea coast, the spatial patterns of quantile trends obtained in linear and nonparametric (spline-based) frameworks display marked differences, which need to be understood in order to fully assess the impact of future changes in sea-level variability on coastal areas. In general, QR demonstrates that the general variability of Baltic sea-level has increased over the last decades. Linear quantile trends estimated for sliding windows in time reveal a wide-spread acceleration of trends in the median, but only localised changes in the rates of changes in the lower and upper quantiles.


Author(s):  
N. B. Avsar ◽  
S. H. Kutoglu ◽  
S. Jin ◽  
B. Erol

In this study, we focus on sea level changes along the Black Sea coast. For this purpose, at same observation period the linear trends and the components of seasonal variations of sea level change are estimated at 12 tide gauge sites (Amasra, Igneada, Trabzon-II, Sinop, Sile, Poti, Batumi, Sevastopol, Tuapse, Varna, Bourgas, and Constantza) located along the Black Sea coast and available altimetric grid points closest to the tide gauge locations. The consistency of the results derived from both observations are investigated and interpreted. Furthermore, in order to compare the trends at the same location, it is interpolated from the trends obtained at the altimetric grid points in the defined neighbouring area with a diameter of 0.125° using a weighted average interpolation algorithm at each tide gauge site. For some tide gauges such as Sevastopol, Varna, and Bourgas, it is very likely that the trend estimates are not reliable because the time-spans overlapping the altimeter period are too short. At Sile, the long-term change for the time series of both data types do not give statistically significant linear rates. However, when the sites have long-term records, a general agreement between the satellite altimetry and tide gauge time series is observed at Poti (~20 years) and Tuapse (~18 years). On the other hand, the difference of annual phase between satellite altimetry and tide gauge results is from 1.32° to 71.48°.


Sign in / Sign up

Export Citation Format

Share Document