Aquifer Diffusivity Estimation Through Joint Inversion of the Amplitude Ratios and Time Lags of Dominant Frequencies of Fluctuating Head

Author(s):  
Valeriia Sobolevskaia ◽  
M. Bayani Cardenas ◽  
Azar K. Hasanov ◽  
Peter S. K. Knappett
2011 ◽  
Vol 15 (11) ◽  
pp. 3495-3510 ◽  
Author(s):  
M. Munz ◽  
S. E. Oswald ◽  
C. Schmidt

Abstract. Quantification of subsurface water fluxes based on the one dimensional solution to the heat transport equation depends on the accuracy of measured subsurface temperatures. The influence of temperature probe setup on the accuracy of vertical water flux calculation was systematically evaluated in this experimental study. Four temperature probe setups were installed into a sand box experiment to measure temporal highly resolved vertical temperature profiles under controlled water fluxes in the range of ±1.3 m d−1. Pass band filtering provided amplitude differences and phase shifts of the diurnal temperature signal varying with depth depending on water flux. Amplitude ratios of setups directly installed into the saturated sediment significantly varied with sand box hydraulic gradients. Amplitude ratios provided an accurate basis for the analytical calculation of water flow velocities, which matched measured flow velocities. Calculated flow velocities were sensitive to thermal properties of saturated sediment and to temperature sensor spacing, but insensitive to thermal dispersivity equal to solute dispersivity. Amplitude ratios of temperature probe setups indirectly installed into piezometer pipes were influenced by thermal exchange processes within the pipes and significantly varied with water flux direction only. Temperature time lags of small sensor distances of all setups were found to be insensitive to vertical water flux.


2011 ◽  
Vol 8 (3) ◽  
pp. 6155-6197 ◽  
Author(s):  
M. Munz ◽  
S. E. Oswald ◽  
C. Schmidt

Abstract. Quantification of subsurface water fluxes based on the one dimensional solution to the heat transport equation depends on the accuracy of measured subsurface temperatures. The influence of temperature probe setup on the accuracy of vertical water flux calculation was systematically evaluated in this experimental study. Four temperature probe setups were installed into a sand box experiment to measure temporal highly resolved vertical temperature profiles under controlled water fluxes in the range of ±1.3 m d−1. Pass band filtered time series provided amplitude and phase of the diurnal temperature signal varying with depth depending on water flux. Amplitude ratios of setups directly installed into the saturated sediment significantly varied with sand box hydraulic gradients. Amplitude ratios provided an accurate basis for the analytical calculation of water flow velocities, which matched measured flow velocities. Calculated flow velocities were sensitive to thermal properties of saturated sediment and to probe distance, but insensitive to thermal dispersivity equal to solute dispersivity. Amplitude ratios of temperature probe setups indirectly installed into piezometer pipes were influenced by thermal exchange processes within the pipes and significantly varied with water flux direction only. Temperature time lags of small probe distances of all setups were found to be insensitive to vertical water flux.


2019 ◽  
Vol 47 (3) ◽  
pp. 196-210
Author(s):  
Meghashyam Panyam ◽  
Beshah Ayalew ◽  
Timothy Rhyne ◽  
Steve Cron ◽  
John Adcox

ABSTRACT This article presents a novel experimental technique for measuring in-plane deformations and vibration modes of a rotating nonpneumatic tire subjected to obstacle impacts. The tire was mounted on a modified quarter-car test rig, which was built around one of the drums of a 500-horse power chassis dynamometer at Clemson University's International Center for Automotive Research. A series of experiments were conducted using a high-speed camera to capture the event of the rotating tire coming into contact with a cleat attached to the surface of the drum. The resulting video was processed using a two-dimensional digital image correlation algorithm to obtain in-plane radial and tangential deformation fields of the tire. The dynamic mode decomposition algorithm was implemented on the deformation fields to extract the dominant frequencies that were excited in the tire upon contact with the cleat. It was observed that the deformations and the modal frequencies estimated using this method were within a reasonable range of expected values. In general, the results indicate that the method used in this study can be a useful tool in measuring in-plane deformations of rolling tires without the need for additional sensors and wiring.


2020 ◽  
Vol 22 (4) ◽  
pp. 939-958
Author(s):  
Indrajit Roy ◽  
D. P. Acharya ◽  
Sourav Acharya

AbstractThe present paper investigates the propagation of quasi longitudinal (qLD) and quasi transverse (qTD) waves in a magneto elastic fibre-reinforced rotating semi-infinite medium. Reflections of waves from the flat boundary with surface stress have been studied in details. The governing equations have been used to obtain the polynomial characteristic equation from which qLD and qTD wave velocities are found. It is observed that both the wave velocities depend upon the incident angle. After imposing the appropriate boundary conditions including surface stress the resultant amplitude ratios for the total displacements have been obtained. Numerically simulated results have been depicted graphically by displaying two and three dimensional graphs to highlight the influence of magnetic field, rotation, surface stress and fibre-reinforcing nature of the material medium on the propagation and reflection of plane waves.


2020 ◽  
Vol 222 (3) ◽  
pp. 1639-1655
Author(s):  
Xin Zhang ◽  
Corinna Roy ◽  
Andrew Curtis ◽  
Andy Nowacki ◽  
Brian Baptie

SUMMARY Seismic body wave traveltime tomography and surface wave dispersion tomography have been used widely to characterize earthquakes and to study the subsurface structure of the Earth. Since these types of problem are often significantly non-linear and have non-unique solutions, Markov chain Monte Carlo methods have been used to find probabilistic solutions. Body and surface wave data are usually inverted separately to produce independent velocity models. However, body wave tomography is generally sensitive to structure around the subvolume in which earthquakes occur and produces limited resolution in the shallower Earth, whereas surface wave tomography is often sensitive to shallower structure. To better estimate subsurface properties, we therefore jointly invert for the seismic velocity structure and earthquake locations using body and surface wave data simultaneously. We apply the new joint inversion method to a mining site in the United Kingdom at which induced seismicity occurred and was recorded on a small local network of stations, and where ambient noise recordings are available from the same stations. The ambient noise is processed to obtain inter-receiver surface wave dispersion measurements which are inverted jointly with body wave arrival times from local earthquakes. The results show that by using both types of data, the earthquake source parameters and the velocity structure can be better constrained than in independent inversions. To further understand and interpret the results, we conduct synthetic tests to compare the results from body wave inversion and joint inversion. The results show that trade-offs between source parameters and velocities appear to bias results if only body wave data are used, but this issue is largely resolved by using the joint inversion method. Thus the use of ambient seismic noise and our fully non-linear inversion provides a valuable, improved method to image the subsurface velocity and seismicity.


1993 ◽  
Vol 163 (4) ◽  
pp. 522-534 ◽  
Author(s):  
W. Adams ◽  
R. E. Kendell ◽  
E. H. Hare ◽  
P. Munk-Jørgensen

The epidemiological evidence that the offspring of women exposed to influenza in pregnancy are at increased risk of schizophrenia is conflicting. In an attempt to clarify the issue we explored the relationship between the monthly incidence of influenza (and measles) in the general population and the distribution of birth dates of three large series of schizophrenic patients - 16 960 Scottish patients born in 1932–60; 22 021 English patients born in 1921–60; and 18 723 Danish patients born in 1911–65. Exposure to the 1957 epidemic of A2 influenza in midpregnancy was associated with an increased incidence of schizophrenia, at least in females, in all three data sets. We also confirmed the previous report of a statistically significant long-term relationship between patients' birth dates and outbreaks of influenza in the English series, with time lags of - 2 and - 3 months (the sixth and seventh months of pregnancy). Despite several other negative studies by ourselves and others we conclude that these relationships are probably both genuine and causal; and that maternal influenza during the middle third of intrauterine development, or something closely associated with it, is implicated in the aetiology of some cases of schizophrenia.


Sign in / Sign up

Export Citation Format

Share Document