Matters of time (lags): Why we choose the lags we do, the difference it makes, and how we can make more informed choices

2014 ◽  
Author(s):  
James P. Selig
Keyword(s):  
Author(s):  
Patrizio Vanella ◽  
Christian Wiessner ◽  
Anja Holz ◽  
Gerard Krause ◽  
Annika Moehl ◽  
...  

European countries report large differences in coronavirus disease (COVID-19) case fatality risk (CFR). CFR estimates depend on demographic characteristics of the cases, time lags between reporting of infections and deaths and infrastructural characteristics, such as healthcare and surveillance capacities. We discuss the impact of these factors on the CFR estimates for Germany, Italy, France, and Spain for the COVID-19 pandemic from early March to mid-April, 2020. We found that, first, a large proportion of the difference in CFRs can be attributed to different age structures of the cases. Second, lags of 5-10 days between day of case report and death should be used, since these provide the most constant estimates. Third, for France, Italy, and Spain, intensive care beds occupied by COVID-19 patients were positively associated with fatality risks of hospitalized cases. Our results highlight that cross-country comparisons of crude CFR estimates can be misleading and should be avoided.


2020 ◽  
Vol 74 (4) ◽  
pp. 354-361
Author(s):  
Tony Blakely ◽  
Cristine Cleghorn ◽  
Frederieke Petrović-van der Deen ◽  
Linda J Cobiac ◽  
Anja Mizdrak ◽  
...  

BackgroundInterventions that reduce morbidity, in addition to mortality, warrant prioritisation. It is important to understand the magnitude of potential morbidity and health gains from changing risk factor distributions. We quantified the impact of tobacco compared with overweight/obesity eradication on future morbidity and health-adjusted life expectancy (HALE) for the New Zealand population alive in 2011.MethodsBusiness-as-usual (BAU) future smoking rates were set based on past falling rates, but we assumed no future change in Body Mass Index (BMI) distribution, given historic trends. Population impact fractions and the percentage reduction in incidence rates for 16 tobacco-related and 14 overweight/obesity-related diseases (allowing for time lags) were calculated using the difference between BAU and eradication risk factor scenarios combined with tobacco and BMI incidence rate ratios. We used two multistate lifetable models to estimate HALE changes over the remaining lifespan and morbidity rate changes 30 years hence.ResultsHALE gains always exceeded life expectancy (LE) gains for overweight/obesity eradication (ie, absolute compression of morbidity), but for eradication of tobacco, the pattern was mixed. For example, among 32-year-olds in 2011, overweight/obesity eradication increased HALE by 2.06 years and LE by 1.21 years, compared with 0.54 and 0.50 years for tobacco eradication.Morbidity rate reductions 30 years into the future were considerably greater for overweight/obesity eradication (eg, a 15.8% reduction for 72-year-olds in 2041, or the cohort that was aged 42 years in 2011) than for tobacco eradication (2.7%). The same rate of morbidity experienced at age 65 years under BAU was deferred by 5 years with overweight/obesity eradication.ConclusionsPreventive programmes that reduce overweight and obesity have strong potential to reduce or compress morbidity, improving the average health status of ageing populations. This paper simulated eradication of tobacco and overweight/obesity; actual interventions will have lesser health impacts, but the relativities of morbidity to mortality gains should be similar.


1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


1997 ◽  
Vol 161 ◽  
pp. 491-504 ◽  
Author(s):  
Frances Westall

AbstractThe oldest cell-like structures on Earth are preserved in silicified lagoonal, shallow sea or hydrothermal sediments, such as some Archean formations in Western Australia and South Africa. Previous studies concentrated on the search for organic fossils in Archean rocks. Observations of silicified bacteria (as silica minerals) are scarce for both the Precambrian and the Phanerozoic, but reports of mineral bacteria finds, in general, are increasing. The problems associated with the identification of authentic fossil bacteria and, if possible, closer identification of bacteria type can, in part, be overcome by experimental fossilisation studies. These have shown that not all bacteria fossilise in the same way and, indeed, some seem to be very resistent to fossilisation. This paper deals with a transmission electron microscope investigation of the silicification of four species of bacteria commonly found in the environment. The Gram positiveBacillus laterosporusand its spore produced a robust, durable crust upon silicification, whereas the Gram negativePseudomonas fluorescens, Ps. vesicularis, andPs. acidovoranspresented delicately preserved walls. The greater amount of peptidoglycan, containing abundant metal cation binding sites, in the cell wall of the Gram positive bacterium, probably accounts for the difference in the mode of fossilisation. The Gram positive bacteria are, therefore, probably most likely to be preserved in the terrestrial and extraterrestrial rock record.


1994 ◽  
Vol 144 ◽  
pp. 421-426
Author(s):  
N. F. Tyagun

AbstractThe interrelationship of half-widths and intensities for the red, green and yellow lines is considered. This is a direct relationship for the green and yellow line and an inverse one for the red line. The difference in the relationships of half-widths and intensities for different lines appears to be due to substantially dissimilar structuring and to a set of line-of-sight motions in ”hot“ and ”cold“ corona regions.When diagnosing the coronal plasma, one cannot neglect the filling factor - each line has such a factor of its own.


Author(s):  
Jules S. Jaffe ◽  
Robert M. Glaeser

Although difference Fourier techniques are standard in X-ray crystallography it has only been very recently that electron crystallographers have been able to take advantage of this method. We have combined a high resolution data set for frozen glucose embedded Purple Membrane (PM) with a data set collected from PM prepared in the frozen hydrated state in order to visualize any differences in structure due to the different methods of preparation. The increased contrast between protein-ice versus protein-glucose may prove to be an advantage of the frozen hydrated technique for visualizing those parts of bacteriorhodopsin that are embedded in glucose. In addition, surface groups of the protein may be disordered in glucose and ordered in the frozen state. The sensitivity of the difference Fourier technique to small changes in structure provides an ideal method for testing this hypothesis.


Author(s):  
P. Maupin-Szamier ◽  
T. D. Pollard

We have studied the destruction of rabbit muscle actin filaments by osmium tetroxide (OSO4) to develop methods which will preserve the structure of actin filaments during preparation for transmission electron microscopy.Negatively stained F-actin, which appears as smooth, gently curved filaments in control samples (Fig. 1a), acquire an angular, distorted profile and break into progressively shorter pieces after exposure to OSO4 (Fig. 1b,c). We followed the time course of the reaction with viscometry since it is a simple, quantitative method to assess filament integrity. The difference in rates of decay in viscosity of polymerized actin solutions after the addition of four concentrations of OSO4 is illustrated in Fig. 2. Viscometry indicated that the rate of actin filament destruction is also dependent upon temperature, buffer type, buffer concentration, and pH, and requires the continued presence of OSO4. The conditions most favorable to filament preservation are fixation in a low concentration of OSO4 for a short time at 0°C in 100mM sodium phosphate buffer, pH 6.0.


Author(s):  
Y. H. Liu

Ordered Ni3Fe crystals possess a LI2 type superlattice similar to the Cu3Au structure. The difference in slip behavior of the superlattice as compared with that of a disordered phase has been well established. Cottrell first postulated that the increase in resistance for slip in the superlattice structure is attributed to the presence of antiphase domain boundaries. Following Cottrell's domain hardening mechanism, numerous workers have proposed other refined models also involving the presence of domain boundaries. Using the anomalous X-ray diffraction technique, Davies and Stoloff have shown that the hardness of the Ni3Fe superlattice varies with the domain size. So far, no direct observation of antiphase domain boundaries in Ni3Fe has been reported. Because the atomic scattering factors of the elements in NijFe are so close, the superlattice reflections are not easily detected. Furthermore, the domain configurations in NioFe are thought to be independent of the crystallographic orientations.


Author(s):  
E.M. Waddell ◽  
J.N. Chapman ◽  
R.P. Ferrier

Dekkers and de Lang (1977) have discussed a practical method of realising differential phase contrast in a STEM. The method involves taking the difference signal from two semi-circular detectors placed symmetrically about the optic axis and subtending the same angle (2α) at the specimen as that of the cone of illumination. Such a system, or an obvious generalisation of it, namely a quadrant detector, has the characteristic of responding to the gradient of the phase of the specimen transmittance. In this paper we shall compare the performance of this type of system with that of a first moment detector (Waddell et al.1977).For a first moment detector the response function R(k) is of the form R(k) = ck where c is a constant, k is a position vector in the detector plane and the vector nature of R(k)indicates that two signals are produced. This type of system would produce an image signal given bywhere the specimen transmittance is given by a (r) exp (iϕ (r), r is a position vector in object space, ro the position of the probe, ⊛ represents a convolution integral and it has been assumed that we have a coherent probe, with a complex disturbance of the form b(r-ro) exp (iζ (r-ro)). Thus the image signal for a pure phase object imaged in a STEM using a first moment detector is b2 ⊛ ▽ø. Note that this puts no restrictions on the magnitude of the variation of the phase function, but does assume an infinite detector.


Author(s):  
John P. Langmore ◽  
Brian D. Athey

Although electron diffraction indicates better than 0.3nm preservation of biological structure in vitreous ice, the imaging of molecules in ice is limited by low contrast. Thus, low-dose images of frozen-hydrated molecules have significantly more noise than images of air-dried or negatively-stained molecules. We have addressed the question of the origins of this loss of contrast. One unavoidable effect is the reduction in scattering contrast between a molecule and the background. In effect, the difference in scattering power between a molecule and its background is 2-5 times less in a layer of ice than in vacuum or negative stain. A second, previously unrecognized, effect is the large, incoherent background of inelastic scattering from the ice. This background reduces both scattering and phase contrast by an additional factor of about 3, as shown in this paper. We have used energy filtration on the Zeiss EM902 in order to eliminate this second effect, and also increase scattering contrast in bright-field and dark-field.


Sign in / Sign up

Export Citation Format

Share Document