Atmospheric Boundary Layer ‐ Free Troposphere Air Exchange in the North China Plain and Its Impact on PM 2.5 Pollution

Author(s):  
Xipeng Jin ◽  
Xuhui Cai ◽  
Qianqian Huang ◽  
Xuesong Wang ◽  
Yu Song ◽  
...  
2020 ◽  
Vol 20 (20) ◽  
pp. 12115-12131
Author(s):  
Ying Jiang ◽  
Likun Xue ◽  
Rongrong Gu ◽  
Mengwei Jia ◽  
Yingnan Zhang ◽  
...  

Abstract. Nitrous acid (HONO) is a significant precursor of atmospheric “detergent” OH radicals and plays a vital role in tropospheric chemistry. The current knowledge about daytime HONO sources is incomplete, and its impact on the tropospheric radical chemistry has not been fully quantified. Existing observational studies of HONO were mostly conducted at the surface, with few efforts focusing on the high-elevation atmosphere. In order to better understand the characteristics and sources of HONO in the upper boundary layer and lower free troposphere, two intensive field observations were carried out at the summit of Mt. Tai (1534 m a.s.l.), the peak of the North China Plain (NCP), in winter 2017 and spring 2018. HONO showed moderate concentration levels (average ± standard deviation: 0.15±0.15 and 0.13±0.15 ppbv), with maximum values of 1.14 and 3.23 ppbv in winter and spring, respectively. Diurnal variation patterns with broad noontime maxima and lower nighttime concentrations were observed during both campaigns, which is distinct from most of the previous studies at the ground level. The Lagrangian particle dispersion model (LPDM, WRF-FLEXPART v3.3) simulations indicated the combined effects of the planetary boundary layer evolution and valley breeze on the daytime HONO peak. A photostationary state (PSS) analysis suggested a strong unknown daytime HONO source with production rates of 0.45±0.25 ppb h−1 in winter and 0.64±0.49 ppb h−1 in spring. Correlation analysis supported the important role of photo-enhanced heterogeneous conversion of NO2 to HONO on the aerosol surface at this high-elevation site. HONO photolysis is the predominant primary source of OH radical and plays a major role in the radical chemistry at Mt. Tai. The model only considering a homogenous HONO source predicted much lower levels of the HOx radicals and atmospheric oxidation capacity than the model constrained with measured HONO data. This study sheds light on the characteristics, sources, chemistry, and impacts of HONO in the upper boundary layer and lower free troposphere in the NCP region.


2018 ◽  
Author(s):  
Tianning Su ◽  
Zhanqing Li ◽  
Ralph Kahn

Abstract. The frequent occurrence of severe air pollution episodes in China has raised great concerns with the public and scientific communities. Planetary boundary layer height (PBLH) is a key factor in the vertical mixing and dilution of near-surface pollutants. However, the relationship between PBLH and surface pollutants, especially particulate matter (PM) concentration, across the whole of China, is not yet well understood. We investigate this issue at ~ 1500 surface stations using PBLH derived from space-borne and ground-based lidar, and discuss the influence of topography and meteorological variables on the PBLH-PM relationship. A generally negative correlation is observed between PM and the PBLH, albeit varying greatly in magnitude with location and season. Correlations are much weaker over the highlands than plains regions, which may be associated with lower pollution levels and mountain breezes. The influence of horizontal transport on surface PM is considered as well, manifested as a negative correlation between surface PM and wind speed over the whole nation. Strong wind with clean upwind sources plays a dominant role in removing pollutants, and leads to weak PBLH-PM correlation. A ventilation rate is introduced to jointly consider horizontal and vertical dispersion, which has the largest impact on surface pollutant accumulation over the North China Plain. Aerosol absorption feedbacks also appear to affect the PBLH-PM relationship, as revealed via comparing air pollution in Beijing and Hong Kong. Absorbing aerosols in high concentrations likely contribute to the significant PBLH-PM correlation over the North China Plain (e.g., during winter). As major precursor emissions for secondary aerosols, sulfur dioxide, nitrogen dioxide, and carbon monoxide have similar negative responses to increased PBLH, whereas ozone is positively correlated with PBLH over most regions, which may be caused by heterogeneous reactions and photolysis rates.


2019 ◽  
Vol 83 ◽  
pp. 152-160 ◽  
Author(s):  
Wei Zhao ◽  
Guiqian Tang ◽  
Huan Yu ◽  
Yang Yang ◽  
Yinghong Wang ◽  
...  

2014 ◽  
Vol 41 (2) ◽  
pp. 645-651 ◽  
Author(s):  
Anne Boynard ◽  
Cathy Clerbaux ◽  
Lieven Clarisse ◽  
Sarah Safieddine ◽  
Matthieu Pommier ◽  
...  

2015 ◽  
Vol 15 (5) ◽  
pp. 2843-2866 ◽  
Author(s):  
K. Ding ◽  
J. Liu ◽  
A. Ding ◽  
Q. Liu ◽  
T. L. Zhao ◽  
...  

Abstract. East Asia has experienced rapid development with increasing carbon monoxide (CO) emission in the past decades. Therefore, uplifting CO from the boundary layer to the free troposphere in East Asia can have great implications on regional air quality around the world. It can also influence global climate due to the longer lifetime of CO at higher altitudes. In this study, three cases of high CO episodes in the East China Sea and the Sea of Japan from 2003 to 2005 are examined with spaceborne Measurements of Pollution in the Troposphere (MOPITT) data, in combination with aircraft measurements from the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program. High CO abundances of 300–550 ppbv are observed in MOZAIC data in the free troposphere during these episodes. These are among the highest CO abundances documented at these altitudes. On average, such episodes with CO over 400 ppbv (in the 2003 and 2004 cases) and between 200 and 300 ppbv (in the 2005 case) may occur 2–5 and 10–20% in time, respectively, in the respective altitudes over the region. Correspondingly, elevated CO is shown in MOPITT daytime data in the middle to upper troposphere in the 2003 case, in the lower to middle troposphere in the 2004 case, and in the upper troposphere in the 2005 case. Through analyses of the simulations from a chemical transport model GEOS-Chem and a trajectory dispersion model FLEXPART, we found different CO signatures in the elevated CO and distinct transport pathways and mechanisms for these cases. In the 2003 case, emissions from large forest fires near Lake Baikal dominated the elevated CO, which had been rapidly transported upward by a frontal system from the fire plumes. In the 2004 case, anthropogenic CO from the North China Plain experienced frontal lifting and mostly reached ~ 700 hPa near the East China Sea, while CO from biomass burning over Indochina experienced orographic lifting, lee-side-trough-induced convection, and frontal lifting through two separate transport pathways, leading to two distinct CO enhancements around 700 and 300 hPa. In the 2005 case, the observed CO of ~ 300 ppbv around 300 hPa originated from anthropogenic sources over the Sichuan Basin and the North China Plain and from forest fires over Indochina. The high CO was transported to such altitudes through strong frontal lifting, interacting with convection and orographic lifting. These cases show that topography affects vertical transport of CO in East Asia via different ways, including orographic uplifting over the Hengduan Mountains, assisting frontal lifting in the North China Plain, and facilitating convection in the Sichuan Basin. In particular, topography-induced lee-side troughs over Indochina led to strong convection that assisted CO uplifting to the upper troposphere. This study shows that the new daytime MOPITT near-infrared (NIR) and thermal-infrared (TIR) data (version 5 or above) have enhanced vertical sensitivity in the free troposphere and may help qualitative diagnosis of vertical transport processes in East Asia.


Sign in / Sign up

Export Citation Format

Share Document